Matemáticas, pregunta formulada por nestorlozano, hace 1 mes

(termino n-esimo)
Termino general de:

1,4,9,16,25,36...

Respuestas a la pregunta

Contestado por KENYINMV
1

Respuesta:

t_{n}=n^{2}

Explicación paso a paso:

1,4,9,16,25,36...  (si te das cuenta son cuadrados perfectos)

1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}, .....

Entonces la formula sería:

t_{n}=n^{2}

Contestado por wernser412
1

Respuesta:        

El termino general de la sucesión an = n²        

       

Explicación paso a paso:        

Formula general de una sucesión de segundo orden:        

An = (A/2)n² + [B - (3A/2)]n + (A + C - B)        

       

Termino general de:  

1,4,9,16,25,36...

       

Donde:        

a₁ = 1        

      

Hallamos C:        

C = a₁        

C =  1      

       

Hallamos B:        

B = t₂ - t₁        

B = 4 - 1        

B =  3      

       

Hallamos A:        

A = (t₃ - t₂) - (t₂ - t₁)        

A = [(9) - (4)] - [(4) - (1)]        

A = (5) - (3)        

A = 5-3        

A =  2      

       

Hallamos el termino general:        

an = (A/2)n² + [B - (3A/2)]n + (A + C - B)        

an = (2/2)n² + [3 - (3(2)/2)]n + [(2) + (1) - (3)]        

an = (2/2)n² + [3 - 6/2]n + [(3) - (3)]        

an = (2/2)n² + [3 - 3]n + [3-3]        

an = (2/2)n² + [0]n + [0]        

an = n² + 0n + 0

an = n²      

       

Por lo tanto, el termino general de la sucesión es an = n²  

Adjuntos:
Otras preguntas