Física, pregunta formulada por kasofia43p4mzwh, hace 1 año

Teorema de conservación de la cantidad de movimiento o momento lineal: Un camión de m1 kg (d1) viaja hacia el este a través de una intersección a v1 km/h (d2) cuando colisiona simultáneamente con dos carros, uno de los carros tiene una masa de m2 kg (d3) y viaja hacia el norte a v1 km/h (d4), el otro carro tiene una masa de m3 kg (d5) y viaja hacia oeste a v3 km/h (d6). Los tres vehículos quedan unidos después de la colisión. Con base en la anterior información: A. Realice un diagrama donde se evidencie la situación antes y después de la colisión. B. ¿Cuál es la velocidad de los carros y el camión justo después de la colisión? C. ¿Cuál es la dirección justo después de la colisión?

Respuestas a la pregunta

Contestado por luismgalli
4

Un choque es elástico cuando su Energía Cinética inicial es igual a la Energía Cinética Final

P = m * V
P : Cantidad de movimiento o movimiento lineal
m: masa
V: Velocidad

Componente en el eje X

mA* VA = mA* VfA* cosα + mB * VfB * cosα

Componente en el eje Y:
VB = 0
 0 = mA* VfA* senα - mB * VfB * senα (I)

Entonces:

VA² = VfA² + VfB²   (II) (Sustituimos)
VA² = VfA ²* cos²α +VfB² * cos²α
VA² - VfA ²* cos²α  = VfB² * cos²α
VfB² * cos²α = (VA - VfA * cosα)²
VfB² * cos²α = VA
² -2VA* VfA * cosα +VfA² * cos²α

VfB² sen²α = VfA sen²α (I)

Sumamos y factorizamos:
VfB² * cos²α  + VfB² sen²α  = VA² -2VA* VfA * cosα +VfA² * cos²α +VfA sen²α 
VfB² (cos²α  + sen²α)  = VA² -2VA* VfA * cosα +VfA² (cos²α +sen²α)
VfB² =  VA² - 2VA* VfA * cosα +VfA²

VA² = VfA² + VfB²  (II)
VA² = VfA² + VA² - 2VA* VfA * cosα +VfA²
VA²- VA² = 2VfA² - 2VA* VfA * cosα
0 = 2VfA² - 2VA* VfA * cosα
2VfA² = 2VA* VfA * cosα (eliminamos los 2)
VfA² = VA* VfA * cosα
VfA² /VA * VfA = cos α
cosα = VfA / VA     ⇒  Formula para calcular el angulo


Velocidades Finales:
VfA = VA *cosα
  
VA² = VfA² + VfB² (II)
VA² = VA² *cos²α  + VfB² 
VfB = √VA² - VA² *cos²α  (Eliminamos cuadrados y factorizamos )
VfB  =VA (1 - cosα)

Otras preguntas