Matemáticas, pregunta formulada por Kevin91600, hace 1 año

Tengo que resolver estos problemas con funciones trigonométricas

1) desde un punto al nivel del suelo y a 124 m de la base de una torre, el ángulo de elevación a la parte más alta de la torre es de 48° calcula la altura de la torre
Son varios quien me ayude a resolver los les pago 100 pesos por ejercicio

Respuestas a la pregunta

Contestado por fermorales6
26

Respuesta: 137.71 m

Explicación paso a paso:

Utilizas una de las razones trigonométricas para poder encontrar lo que se te pide.

En este caso utilizaremos:

tan= cop / cod

cop= cateto opuesto

cod= cateto adyacente

Aplicación de la fórmula con los datos dados

tan 48°= h/124

Realizamos una regla de 3

h= (124) (tan 48°) / 1

h= 137.71 m

h→ altura del triángulo

Contestado por carbajalhelen
5

La altura de la torre a 124 m de la base,  con un  el ángulo de elevación de 48°, es:

137.72 m

¿Qué es un triángulo?

Un triángulo es un polígono que se caracteriza por tener tres lados. Y sus ángulos internos suman 180º.

¿Qué son las razones trigonométricas?

La relación que forman los catetos de un triángulo rectángulo con sus ángulos y las funciones trigonométricas.

  • Sen(α) = Cat. Op/Hip
  • Cos(α) = Cat. Ady/Hip
  • Tan(α) = Cat. Op/Cat. Ady

¿Cuál es la altura de la torre?

Aplicar razones trigonométricas;

Tan(48º) = H/124

Despejar H;

H = 124 Tan(48º)

H = 137.72 m

Puedes ver más sobre razones trigonométricas aquí:

https://brainly.lat/tarea/5066210

#SPJ2

Adjuntos:
Otras preguntas