Tanx+cotx /secx.cscx
ayudaaaa plisss
Respuestas a la pregunta
Respuesta:
no entiendo perdóname :c
Respuesta:
es lo que hay
Explicación paso a paso:
Verificar la identidad tan(x)+cot(x)=sec(x)csc(x) |
tan(x)+cot(x)=sec(x)csc(x) tan ( x ) + cot ( x ) = sec ( x ) csc ( x ). Comience por el lado izquierdo. tan(x)+cot(x) tan ( x ) + cot ( x ). Convierta a senos y cosenos.
tsin
( x ) cos ( x ) + cos ( x ) sin ( x ) sin
( x ) cos ( x ) + cos ( x ) sin ( x )
Sumar fracciones.
sin ( x ) sin ( x ) + cos ( x ) cos ( x ) cos ( x ) sin ( x )
Simplifique cada término.
sin 2 ( x) + cos 2 ( x ) cos ( x ) sin (x )
Utiliza la identidad de Pitágoras.
1 cos ( x ) sin ( x )
Ahora considere el lado derecho de la ecuación.
sec ( x ) csc ( x )
Convierta a senos y cosenos.
Toca para ver más pasos...
1 cos ( x ) ⋅ 1 sin ( x ) Multiplicar 1 cos ( x ) por 1 sin ( x . 1 cos ( x ) sin ( x )
Ya que ha sido mostrado que ambos lados son equivalentes, la ecuación es una identidad.
tan ( x) + cot (x ) = sec ( x ) csc ( x ) es una identidad
(
x
)
+
cot
(
x
)
=
sec
(
x
)
csc
(
x
)
Comience por el lado izquierdo.
tan
(
x
)
+
cot
(
x
)
Convierta a senos y cosenos.
Toca para ver más pasos...
sin
(
x
)
cos
(
x
)
+
cos
(
x
)
sin
(
x
)
Sumar fracciones.
Toca para ver más pasos...
sin
(
x
)
sin
(
x
)
+
cos
(
x
)
cos
(
x
)
cos
(
x
)
sin
(
x
)
Simplifique cada término.
sin
2
(
x
)
+
cos
2
(
x
)
cos
(
x
)
sin
(
x
)
Utiliza la identidad de Pitágoras.
1
cos
(
x
)
sin
(
x
)
Ahora considere el lado derecho de la ecuación.
sec
(
x
)
csc
(
x
)
Convierta a senos y cosenos.
Toca para ver más pasos...
1
cos
(
x
)
⋅
1
sin
(
x
)