Estadística y Cálculo, pregunta formulada por jhosephnovoa, hace 1 año

Suponga que una empresa petrolera sostiene que en los procesos de exploración y
explotación, la probabilidad de que un pozo sea productivo es del 32%. Se establece que
se va a la iniciar explotación en 8 pozos. Cuál es la probabilidad de que:
a. Todos sean productivos.
b. Exactamente 3 no sean productivos.
c. Por lo menos dos no sean productivos.

Respuestas a la pregunta

Contestado por luismgalli
4

La probabilidad de que todos los pozos sean productivos es de 0,0001, exactamente 3 no sean productivos. es 0,9982 y por lo menos dos no sean productivos es de 0,0008

Explicación:

Probabilidad binomial:

P(x=k) =Cn,k (p)∧k (q)∧(n-k)

p: el pozo sea productivo

q: que el pozo no sea productivo

p = 0,32

q = 0,68

n = 8 pozos

La probabilidad de que:

a. Todos sean productivos.

P(x= 8) = C8,8 (0,32)⁸ (0,68)⁰

C8,8 =1

P(x= 8) =0,0001

La probabilidad de que todos los pozos sean productivos es de 0,0001

b. Exactamente 3 no sean productivos.

P(8,5) = C8,5 (0,32)⁸ (0,68)³

P(8,5) = 56*0,0001*0,314432

P(8,5) =0,0018

P(3 no sea productivos) = 1-0,0018 = 0,9982

c. Por lo menos dos no sean productivos.

P(x≤2) = P(x=0) +P(x=1) +P(x= 2)

P(x≤2) =0,0000009 +0,00005+0,0003

P(x≤2) = 0,0008

Otras preguntas