sucesión de 1,2,-4-8-14-28-34
Respuestas a la pregunta
Respuesta:
Finita o infinita
Si la sucesión sigue para siempre, es una sucesión infinita,
si no es una sucesión finita
Ejemplos:
{1, 2, 3, 4 ,...} es una sucesión muy simple (y es una sucesión infinita)
{20, 25, 30, 35, ...} también es una sucesión infinita
{1, 3, 5, 7} es la sucesión de los 4 primeros números impares (y es una sucesión infinita)
{4, 3, 2, 1} va de 4 a 1 hacia atrás
{1, 2, 4, 8, 16, 32, ...} es una sucesión infinita donde vamos duplicando cada término
{a, b, c, d, e} es la sucesión de las 5 primeras letras en order alfabético
{a, l, f, r, e, d, o} es la sucesión de las letras en el nombre "alfredo"
{0, 1, 0, 1, 0, 1, ...} es la sucesión que alterna 0s y 1s (sí, siguen un orden, en este caso un orden alternativo)
En orden
Cuando decimos que los términos están "en orden", ¡nosotros somos los que decimos qué orden! Podría ser adelante, atrás... o alternando... ¡o el que quieras!
Como un conjunto
Una sucesión es muy parecida a un conjunto, pero:
los términos están en orden (en los conjuntos el orden no importa).
el mismo valor puede aparecer muchas veces (en los conjuntos solo una vez).
Ejemplo: {0, 1, 0, 1, 0, 1, ...} es la sucesión que alterna 0s y 1s.
El conjunto sería solo {0,1}
Notación
Las secuencias también usan la misma notación que los conjuntos:
se enumera cada elemento, separados por una coma,
y luego se ponen llaves alrededor de todo.{3, 5, 7, ...}
Los corchetes { } también se conocen como "llaves".
La regla
Una sucesión sigue una regla que te dice cómo calcular el valor de cada término.
Ejemplo: la sucesión {3, 5, 7, 9, ...} empieza por 3 y salta 2 cada vez:

¡Pero la regla debería ser una fórmula!
Decir que "empieza por 3 y salta 2 cada vez" no nos dice cómo se calcula el:
10º término,
100º término, o
n-ésimo término (donde n puede ser cualquier número positivo que queramos).
Así que queremos una fórmula con "n" dentro (donde n será la posición que tiene el término).
Entonces, ¿cuál sería la regla para {3, 5, 7, 9, ...}?
Primero, vemos que la sucesión sube 2 cada vez, así que podemos adivinar que la regla va a ser "2 × n". Vamos a verlo:
Probamos la regla: 2n
nTérminoPrueba132n = 2×1 = 2252n = 2×2 = 4372n = 2×3 = 6
Esto casi funciona... pero la regla da todo el tiempo valores 1 unidad menos de lo que debería, así que vamos a cambiarla un poco:
Probamos la regla: 2n+1
nTérminoRegla132n+1 = 2×1 + 1 = 3252n+1 = 2×2 + 1 = 5372n+1 = 2×3 + 1 = 7
¡Funciona!
Así que en vez de decir "empieza por 3 y salta 2 cada vez" escribimos la regla como
2n+1
Ahora, por ejemplo, podemos calcular el término
Explicación paso a paso:
corona plis