Matemáticas, pregunta formulada por carlotabmsl, hace 10 meses

solo la g y h
demostrar las siguientes identidades​

Adjuntos:

Respuestas a la pregunta

Contestado por AuricTesla
1

Recuerda:

 \sin(2x)  = 2 \sin(x)  \cos(x)

 \cos(2x)  =  \cos {}^{2} (x) -  \sin {}^{2} (x)   \\

 \sin {}^{2} (x)  +  \cos {}^{2} (x)  = 1

g)

 {( \sin(x ) +  \cos(x)  )}^{2}  = 1 +  \sin(2x)  \\  \sin {}^{2} (x)  + \cos {}^{2} (x)  +  2 \sin(x)  \cos(x)   = 1 +  \sin(2x)  \\ 1 +  \sin(2x)  = 1 +  \sin(2x)  \\ 1 = 1

h)

 \frac{1 +  \cos(2x) }{ \sin(2x) }  =  \cot(x)  \\  \frac{  \sin {}^{2} (x) +  \cos {}^{2} (x) +  \cos {}^{2} (x)  -  \sin {}^{2} (x)   }{2 \sin(x)  \cos(x) }  =  \cot(x)  \\  \frac{2 \cos {}^{2} (x) }{2 \sin(x)  \cos(x) }  =  \cot(x)  \\  \frac{ \cos(x) }{ \sin(x) }  =  \cot(x)  \\  \cot(x)  =  \cot(x)  \\ 1 = 1


carlotabmsl: muchas gracias
Otras preguntas