Matemáticas, pregunta formulada por yat09, hace 4 meses

sistema de ecuaciones 2x2. x+5y=14. 5x+3y=26. ayuda​

Respuestas a la pregunta

Contestado por diegoandrade19f
1

Respuesta:

\begin{pmatrix}x=-\frac{15.03639\dots }{5},\:&y=13.67879\dots \end{pmatrix}

Explicación paso a paso:

\begin{bmatrix}2x^2x+5y=14\\ 5x+3y=26\end{bmatrix}

Despejar x para 5x+3y=26: x=\frac{26-3y}{5}

Sustituir las soluciones x=\frac{26-3y}{5}\mathrm{\:en\:}2x^2x+5y=14

Para 2x^2x+5y, sustituir x con \frac{26-3y}{5}: y=13.67879\dots

Sustituir las soluciones y=13.67879\dots \mathrm{\:en\:}5x+3y=26

Para 5x+3y=26, sustituir y con 13.67879\dots:  x=-\frac{15.03639\dots }{5}

Por lo tanto, la solución final para 2x^2x+5y=14,\:5x+3y=26 es

\begin{pmatrix}x=-\frac{15.03639\dots }{5},\:&y=13.67879\dots \end{pmatrix}

Mira si esto te sirve


yat09: muchas grasias
Otras preguntas