Si Z-----n(0.1)hallar los puntos -Z0yZ0en las siguientes areas p[Zo <=Z<=Zo] = 0.98
Respuestas a la pregunta
Calculamos el intervalo de confianza de una variable normal estandarizada con media cero (0) y desviación estándar uno (1).
- Los valores del intervalo son -2,05 ≤ Z ≤ 2,05.
Datos:
1. Distribución normal.
2. Media; μ = 0
3. Desviación estándar: S = 1
4. Probabilidad del intervalo: p[Z₀ ≤ Z ≤ Z₀] = 0,98.
Para calcular el intervalo, usamos la siguiente expresión:
Como la media es cero y la desviación estándar es uno, la expresión anterior se reduce a:
El valor de probabilidad me indica que esa expresión corresponde a 0,98. Para hallar el valor del estadístico, usamos una tabla de distribución normal estandarizada Z o en Excel con la siguiente formula =DISTR. NORM. ESTAND. INV(0,98).
Obtenemos que el valor es Z₀ = 2,05, que corresponde al valor a calcular. Como los valores alrededor de la media son simétricos, se toman como -2,05 ≤ Z ≤ 2,05.