Si x + y = 1 y xy=1, ¿ Cuál es el valor de la expresión ? x^{3} + y^{3}
Respuestas a la pregunta
El valor de la expresión x³ + y³ es : ( √3 -5 )/4 y - ( √3 +5 )/4 .
El valor de la expresión x³ + y³ se calcula mediante la solución previa del sistema de dos ecuaciones con dos incógnitas proporcionado : x + y = 1 ; x*y = 1 , de la siguiente manera :
x+y = 1
x*y = 1
x³+ y³ =?
x+ y = 1 ⇒ y = 1- x
x*y = 1
x* ( 1- x ) = 1
x - x² = 1
x² - x +1 =0
x = - (-1) -+ √( (-1)²- 4*1*1) /2*1
x = 1 -+√-3 /2
x1 = (1 +√3 i)/2 = 1/2 + √3/2i
x2 = (1 -√3 i)/2 = 1/2 - √3/2i
y1 = 1-x1 = 1- ( 1/2 + √3/2i) = 1/2 - √3/2i
y2 = 1- x2 = 1- ( 1/2 - √3/2i ) = 1/2 + √3/2i
x³+ y³ = ( x + y ) * ( x²- xy +y²)
(1/2 + √3/2i)³+ (1/2 - √3/2i)³=(1/2+√3/2i+1/2-√3/2i)*((1/2+√3/2i)²-(1/2+√3/2i)* (1/2-√3/2i) +(1/2 - √3/2i)²)
= (1/2+√3/2i)²-(1/2+√3/2i)* (1/2-√3/2i) +(1/2 - √3/2i)²
= 1/4 +√3/2i -3/4 - ( 1/4 +√3/4 )+ 1/4 -√3/2i -3/4
= -5/4 +√3/4
= ( √3 -5 )/4
x³+ y³ = ( x + y ) * ( x²- xy +y²)
(1/2 - √3/2i)³+ (1/2 + √3/2i)³=(1/2-√3/2i+1/2+√3/2i)*((1/2-√3/2i)²-(1/2-√3/2i)* (1/2+√3/2i) +(1/2 + √3/2i)²)
= (1/2-√3/2i)²-(1/2-√3/2i)* (1/2+√3/2i) +(1/2 + √3/2i)²
= 1/4 -√3/2i -3/4 - ( 1/4 +√3/4 )+ 1/4 +√3/2i -3/4
= -5/4 - √3/4
= - ( √3 +5 )/4
Para consultar visita :https://brainly.lat/tarea/10535791