Matemáticas, pregunta formulada por liz408, hace 1 año

Si
 \frac{m}{n} =2
Calcula
 \frac{ {m}^{2} + {n}^{2} }{m \times n}

Respuestas a la pregunta

Contestado por AspR178
0

Hola :D

Si \frac{m}{n}, calcula \frac{m^{2}+n^{2}  }{m\times n}

Nosotros podemos descomponer la fracción de esta manera:

\frac{m^{2}+n^{2}  }{m\times n}\rightarrow \frac{m^{2} }{m\times n} +\frac{n^{2}}{m\times n}

Para continuar debemos recordar las leyes de exponentes, solamente una en específico, la cual nos dice que: \textbf{\frac{a^{n} }{a^{m} }=a^{n-m} }\frac{a^{n} }{a^{m} }=a^{n-m}

Al tener la misma base en una división, los exponentes se restan.

Por ejemplo aquí: \frac{m^{2} }{m\times n}

Tenemos m^{2} en el numerador y m, restando los exponentes, te queda como m, pero, ¿va arriba o abajo? cuando el exponente te da positivo va arriba, cuando es negativo va abajo.

Simplificando ambas partes nos queda: \frac{m}{n} +\frac{n}{m}

Para obtener \frac{n}{m} debemos invertir a \frac{m}{n}, sí \frac{m}{n}=2, entonces su inverso es: \frac{n}{m}=\frac{1}{2}

Resolviendo:

\underbrace{\frac{m}{n}} + \underbrace{\frac{n}{m} }\\\ 2\:\:\:\:\:\:+\:\:\frac{1}{2} \rightarrow\frac{4}{2}+\frac{1}{2}\therefore \boxed{\boxed{\frac{5}{2} }}

Saludos cordiales, AspR178 !

Otras preguntas