Si N es un número con este aspecto 3a42b con a y b digitos. ¿De cuantas maneras puedo elegir a y b para N sea divisible por 6?
Respuestas a la pregunta
Contestado por
2
Es algo laborioso pero conociendo las reglas de divisibilidad de 2, 3 y 6, sólo es cuestión de aplicarlas.
De entrada, para que el N sea divisible por 6, lo ha de ser simultáneamente de 2 y de 3
Para que sea divisible por 2 ha de terminar en cero o cifra par, por tanto la letra "b" puede tomar los valores: 0, 2, 4, 6, 8
Para que sea divisible por 3, el número resultante de la suma de sus cifras debe ser divisible por 3.
La suma de las cifras descubiertas: 3+4+2 = 9 es divisible por 3, de donde se puede deducir que para que el nº completo siga siendo divisible por 3, la suma de "a+b" también debe ser divisible por 3, según eso:
Si b=0... "a" puede tomar valores = 3, 6, 9 (tres maneras)
Si b=2... "a" puede tomar valores = 1, 4, 7 (tres maneras)
Si b=4... "a" puede tomar valores = 2, 5 (dos maneras)
Si b=6... "a" puede tomar valores = 3 (una manera)
Si b=8... "a" puede tomar valor = 1 (una manera)
3+3+2+1+1 = 10 maneras es la respuesta.
Saludos.
De entrada, para que el N sea divisible por 6, lo ha de ser simultáneamente de 2 y de 3
Para que sea divisible por 2 ha de terminar en cero o cifra par, por tanto la letra "b" puede tomar los valores: 0, 2, 4, 6, 8
Para que sea divisible por 3, el número resultante de la suma de sus cifras debe ser divisible por 3.
La suma de las cifras descubiertas: 3+4+2 = 9 es divisible por 3, de donde se puede deducir que para que el nº completo siga siendo divisible por 3, la suma de "a+b" también debe ser divisible por 3, según eso:
Si b=0... "a" puede tomar valores = 3, 6, 9 (tres maneras)
Si b=2... "a" puede tomar valores = 1, 4, 7 (tres maneras)
Si b=4... "a" puede tomar valores = 2, 5 (dos maneras)
Si b=6... "a" puede tomar valores = 3 (una manera)
Si b=8... "a" puede tomar valor = 1 (una manera)
3+3+2+1+1 = 10 maneras es la respuesta.
Saludos.
Otras preguntas
Historia,
hace 7 meses
Matemáticas,
hace 1 año
Geografía,
hace 1 año
Matemáticas,
hace 1 año
Química,
hace 1 año