. Si las siguientes ecuaciones presentan una raíz en común 5x2+ax – 1=0; a ≠ 4 5x2+4x+b=; 0 b ≠ – 1 determine dicha raíz.
Respuestas a la pregunta
Respuesta:
1) Resolver
(x + 3)(2x − 1) = 9
Lo primero es igualar la ecuación a cero.
Para hacerlo, multiplicamos los binomios:
ecuacion_seg_grado023
Ahora, pasamos el 9, con signo contrario, al primer miembro para igualar a cero:
ecuacion_seg_grado024
Ahora podemos factorizar esta ecuación:
(2x − 3)(x + 4) = 0
Ahora podemos igualar a cero cada término del producto para resolver las incógnitas:
Si
2x − 3 = 0
2x = 3
ecuacion_seg_grado025
Si
x + 4 = 0
x = −4
Esta misma ecuación pudo haberse presentado de varias formas:
(x + 3)(2x − 1) = 9
2x2 + 5x − 12 = 0
2x2 + 5x = 12
2x2 − 12 = − 5x
En todos los casos la solución por factorización es la misma:
2) Halle las soluciones de
ecuacion_seg_grado026
La ecuación ya está igualada a cero y solo hay que factorizar e igualar sus factores a cero y luego resolver en términos de x:
ecuacion_seg_grado027
Ahora, si
x = 0
o si
x− 4 = 0
x = 4
Algunos ejercicios: Resolver cada ecuación por el método de factorización:
ecuacion_seg_grado028
Soluciones:
ecuacion_seg_grado029
Explicación: