Matemáticas, pregunta formulada por LorenzQuea, hace 1 año

Si la suma de 1/3 de un número impar y
4/3 del número impar consecutivo es 61,
¿cuál es el número par entre estos dos
números impares?

Respuestas a la pregunta

Contestado por ALugo
10
El enunciado del problema nos indica que existen 3 números consecutivos, ni, con la siguiente, distribución:

1/3(n1)n2,  4/3(n3), donde   1/3(n1) + 4/3(n3) = 61

También se sabe que n1 y n3 son impares y n2 es par.

Se desea conocer qué valor tiene n2.

Ahora, si n1 es impar, podemos expresarlo como:

n1 = 2n +1, donde n =0, 1, 2, ..n, con n ∈ N


Si n3 es impar y está ubicado 2 lugares más adelante que n1, podemos expresar a n3 = 2n  + 3, con n=0, 1, 2,...n, con n ∈ N.

De lo anterior podemos decir que el valor buscado de n2 = 2n +2. donde                  n =0, 1, 2, ..n, con n ∈ N

Calculemos n2.

Sabemos entonces que 1/3(n1) + 4/3(n3) = 61. Reemplazando a n1  y n3 por sus valores tenemos:

1/3(2n+1) + 4/3(2n +3) = 61,  es decir,  2/3(n)+ 1/3 + 8/3(n)´+ 12/3 = 61,
esto es igual a 10/3(n)+13/3=61 de donde se determina que:

n = 17

Así podemos decir que n2 = 2n + 2 = 2*17+2=36;

Entonces el valor par buscado n2  = 36; con n1 = 35 y n3 = 37.



Espero que te haya sido útil la respuesta.
Otras preguntas