Si la distancia entre los puntos P (3,y) R (-4,1) es 13 hallar el valor de y
Respuestas a la pregunta
Contestado por
0
sol
Aplicamos la formula
d(P1,P2) = √((X2-X1)² +(Y2-Y1)²) //X2 es x sub2 y asi para los demas
P1 =P= (3,y)
P2= R = (-4,1)
d(P1,P2) = √((X2-X1)² +(Y2-Y1)²)
13 = √((-4 -3)² +(1-y)²)
13² = (-4 -3)² +(1-y)²
13² = (- 7)² +(1-y)²
169-49 = (1-y)²
120 = (1-y)²
√120 = 1 -y
√(120) - 1 = -y
1- √120 = y
-9.955 = y ó 11.955 = y // las dos soluciones son validas
P= (3,-9.955 ) ó P =( 3, 11.955)
Prueba
13 = √((-4 -3)² +(1-y)²) tomando y = -9.955
13 = √((-4 -3)² +(1-(-9.955))²)
13 = √((- 7)² +(10.955))²)
13 = √(49 + 120)
13 = √169
13 = 13
13 = √((-4 -3)² +(1-y)²) tomando y = 11.955
13 = √((-4 -3)² +(1-11.955)²)
13 = √((- 7)² +(-10.955))²)
13 = √(49 + 120)
13 = √169
13 = 13
Aplicamos la formula
d(P1,P2) = √((X2-X1)² +(Y2-Y1)²) //X2 es x sub2 y asi para los demas
P1 =P= (3,y)
P2= R = (-4,1)
d(P1,P2) = √((X2-X1)² +(Y2-Y1)²)
13 = √((-4 -3)² +(1-y)²)
13² = (-4 -3)² +(1-y)²
13² = (- 7)² +(1-y)²
169-49 = (1-y)²
120 = (1-y)²
√120 = 1 -y
√(120) - 1 = -y
1- √120 = y
-9.955 = y ó 11.955 = y // las dos soluciones son validas
P= (3,-9.955 ) ó P =( 3, 11.955)
Prueba
13 = √((-4 -3)² +(1-y)²) tomando y = -9.955
13 = √((-4 -3)² +(1-(-9.955))²)
13 = √((- 7)² +(10.955))²)
13 = √(49 + 120)
13 = √169
13 = 13
13 = √((-4 -3)² +(1-y)²) tomando y = 11.955
13 = √((-4 -3)² +(1-11.955)²)
13 = √((- 7)² +(-10.955))²)
13 = √(49 + 120)
13 = √169
13 = 13
12345139:
Gracias
Otras preguntas
Química,
hace 7 meses
Ciencias Sociales,
hace 1 año
Ciencias Sociales,
hace 1 año
Castellano,
hace 1 año
Historia,
hace 1 año