Matemáticas, pregunta formulada por olveratp, hace 1 mes

Si el lado de un cuadrado crece un 3%, ¿cuánto crece su perímetro y cuánto su área?

Respuestas a la pregunta

Contestado por jojavier1780
1

Para conocer cuanto crece la relación de perímetro y área, vamos a dar valores al cuadrado, esto será:

  • Lado = 4cm
  • Si crece el 3% será
  • 4(3/100) +4= 4,12cm

Si calculamos el perímetro este será:

  • P = L+L+L+L
  • P =16,48cm

Si calculamos el área este será:

  • A= L² = ( 4,12cm )² =16,9744 cm²

Ahora, analizando el área y perímetro inicial, sin considerar el 3% tenemos:

  • Perímetro = 16cm
  • área = 16cm²

Por tanto, la relación de porcentaje que hay es la siguiente:

  • El perímetro inicial respecto al segundo incrementa el 3%
  • El área inicial respecto al segundo incrementa el 6,09%

¿Qué es porcentaje?

El porcentaje se lo puede representar de varias formas puede ser el 100%, o puede ser la unidad (1) conociendo que si simplificamos la expresión 100/ 100 = 1, de todas maneras, el porcentaje siempre se evalúa en base al 100% y sirve para conocer cantidades o probabilidades de mayor o menor ganancia.

¿Qué es regla de tres directa?

La regla de tres directa es una relación lineal y directa que, dada una relación inversa entre dos variables, me permite conocer el valor desconocido (incógnita) de una de ellas asociado al valor proporcional inverso, de acuerdo a la relación conocida entre ambos valores.

Planteamiento

  • un cuadrado crece 3%
  • cuanto crece su perímetro y área.

1. Para conocer el incremento del área y perímetro vamos a dar una dimensión inicial, en este caso será

  • L = 4cm
  • P = 4(L) = 16cm
  • A = L² = 16cm²

2. Ahora, si hacemos el incremento del 3% a su lado, tenemos:

  • L = 3/100(4cm) +4cm = 4,12cm
  • P = 16,48cm
  • A = 16,9744cm²

3. Finalmente, hacemos una regla de tres directa para conocer el incremento en porcentaje, esto es:

  • área            %
  • 16              100
  • 16,9744       x

x = 16,9744 x 100 /16 = 106,09%, por tanto, 100-106,09% = 6,09% será el incremento del área.

4. Aplicamos para el caso del perímetro así tenemos:

  • El perímetro inicial respecto al segundo incrementa el 3%
  • El área inicial respecto al segundo incrementa el 6,09%

Puede ver más sobre porcentaje y regla de tres en:

https://brainly.lat/tarea/13583136

https://brainly.lat/tarea/7112946

#SPJ1

Adjuntos:
Otras preguntas