Matemáticas, pregunta formulada por guillermoolivera653, hace 5 meses

Si: A* =A^{2} + A ; A^{0} =A^{2} +A +1
Además: A* = \frac{156}{A^{0} }
Determinar uno de los valores de A:
a) 1
b)2
c)3
d)4
e)5
ayuda pls con procedimiento, doy coronita

Respuestas a la pregunta

Contestado por lorenacv170984
1

Explicación paso a paso:

Datos:

A*= A²+A

A⁰= A²+A+1

reemplazamos los datos en:

A {}^{*} =  \frac{156}{A {}^{0}  }  \\ \\ A {}^{2}  + A =  \frac{156}{A {}^{2}  + A + 1} \\  \\ (A {}^{2}  + A + 1)(A {}^{2}  + A) =  156 \\  \\ (A {}^{2} ) (A{}^{2} ) + (A {}^{2})  ( A) +  (A {}^{2})  ( A) + (A)  ( A) +  (1)  ( A {}^{2} ) + (1)( A) =  156  \\  \\ A {}^{4}  + 2  A {}^{3}  +  2A {}^{2} +   A = 156 \\  \\ A {}^{4}  + 2  A {}^{3}  +  2A {}^{2} +  52 A -  51A   - 156 = 0 \\  \\ A {}^{4}    - 3  A {}^{3} + 5 A {}^{3} - 15A {}^{2} + 17A {}^{2} +  52 A -  51A   - 156 = 0 \\  \\( A {}^{4}    - 3  A {}^{3}) + (5 A {}^{3} - 15A {}^{2} )+ (17A {}^{2}  -  51 A)  + (  52A   - 156) = 0 \\  \\A {}^{3}  ( A     - 3) + 5  A {}^{2}  ( A  - 3 )+17 A( A -   3 )  +52 ( A   - 3) = 0 \\  \\ (A - 3)(A {}^{3}  + 5A {}^{2}  + 17A + 52) = 0 \\  \\ (A  - 3)(A {}^{3}  + 4A {}^{2}  + A {}^{2}  + 4A + 13A + 52) = 0 \\  \\ (A - 3) [ (A {}^{3}  +4A {}^{2}) + ( A {}^{2}  +4 A) + (13A + 52)] = 0 \\  \\  (A - 3)[A {}^{2}  (A   +4 ) +A ( A  +4 ) + 13(A + 4)] = 0 \\  \\ (A - 3)(A + 4)(A {}^{2}  + A + 13 = 0) = 0 \\  \\ A _1 - 3 = 0 \\ A _1 = 3 \\  \\ A _2  + 4 = 0 \\ A _2 =  - 4 \\  \\ A {}^{2}  + A + 13 = 0 \:  \:  \: A \not ∈ \: \mathbb{R}

uno de los valores de A= 3

Espero que sea de tu ayuda

Saludos :)

Otras preguntas