Si a+b=6yab=4 calcula a3+b3
Respuestas a la pregunta
Respuesta:
b₁ = 3 + √5
a₁ = 4 / (3 + √5)
a³ + b³ = 144
b₂ = 3 - √5
a₂ = 4 / (3 - √5)
a³ + b³ = 144
Explicación paso a paso:
a + b = 6
ab = 4
ab = 4
a = 4 / b
4 / b + b = 6
(4 + b²) / b = 6
4 + b² = 6b
b² - 6b + 4 = 0 b = x
x² - 6x + 4 = 0
x = (-b ± √(b² - 4ac)) / 2a
x = (-(-6) ± √((-6)² - 4(1)(4))) / 2(1)
x = (6 ± √(36 - 16)) / 2
x = (6 ± √(20)) / 2
x = (6 ± √(5*4)) / 2
x = (6 ± 2√5)) / 2
x = 2(3 ± √5)) / 2
x = 3 ± √5
b₁ = 3 + √5
b₂ = 3 - √5
b₁ = 3 + √5
a₁ = 4 / (3 + √5)
a³ + b³
(4 / (3 + √5))³ + (3 + √5)³
(64/(3³ + 3(3)²(√5) + 3(3)(√5)² + (√5)³)) + (3³ + 3(3)²(√5) + 3(3)(√5)² + (√5)³)
(64 / (27 + 27√5 + 9(5) + 5√5)) + (27 + 27√5 + 9(5) + 5√5)
(64 / (27 + 32√5 + 45)) + (27 + 32√5 + 45)
(64 / (72 + 32√5)) + (72 + 32√5)
(64 + (72 + 32√5)²) / (72 + 32√5)
(64 + 5184 + 2(72)(32√5) + (32√5)² )) / (72 + 32√5)
(64 + 5184 + 4608√5 + 1024*5) / (72 + 32√5)
(64 + 5184 + 4608√5 + 5120) / (72 + 32√5)
(10368 + 4608√5) / (72 + 32√5)
144(72 + 32√5) / (72 + 32√5)
144
b₂ = 3 - √5
a₂ = 4 / (3 - √5)
(4 / (3 - √5))³ + (3 - √5)³
(64/(3³ + 3(3)²(-√5)+3(3)(-√5)²+(-√5)³)) + (3³ + 3(3)²(-√5)+3(3)(-√5)²+(-√5)³)
(64 / (27 - 27√5 + 9(5) - 5√5)) + (27 - 27√5 + 9(5) - 5√5)
(64 / (27 - 32√5 + 45)) + (27 - 32√5 + 45)
(64 / (72 - 32√5)) + (72 - 32√5)
(64 + (72 - 32√5)²) / (72 - 32√5)
(64 + 5184 + 2(72)(-32√5) + (-32√5)² )) / (72 - 32√5)
(64 + 5184 - 4608√5 + 1024*5) / (72 - 32√5)
(64 + 5184 - 4608√5 + 5120) / (72 - 32√5)
(10368 - 4608√5) / (72 + 32√5)
144(72 - 32√5) / (72 - 32√5)
144