Si a+b= 11 y ab= 28, encuentra el valor de a-b.
(sugerencia: hallar primero a^2 + b^2)
Respuestas a la pregunta
Respuesta:
a - b = 3
Explicación paso a paso:
Primero elevamos al cuadrado el (a + b) = 11; por lo tanto quedaría de esta manera:
(a + b)² = 11²
a² + 2ab + b² = 121
Recordemos: ab = 28
a² + 2(28) + b² = 121
a² + 56 + b² = 121
a² + b² = 121 - 56
a² + b² = 65
Hemos hallado el valor de a² + b², empero aún falta el a - b:
a² + 2ab = b² = 121
Recordemos: a² + b² = 65
65 + 2ab = 121
2ab = 56
ab = 28
De ese planteamiento nos sale el "ab = 28", cabe recalcar que es para verificar el origen de los valores del problema, sigamos resolviendo ¿Qué números multiplicados dan 28?
14 x 2, 7 x 4, 28 x 1, aunque el 28 x 1 obviamente no es, lo cual significa que habrá un descarte
(14 + 2)² = 121
16² = 121
Como pueden ver las variables no pueden ser 14 x 2, aunque solo nos deja con la posibilidad de que 7 y 4 sean las variables
(7 + 4)² = 121
11² = 121
Ya tenemos las variables, en consiguiente, debemos restar a-b
a - b = 7 - 4 = 3
La respuesta es 3, porque es la resta de a - b que es 7 - 4.