Semana 4 PRUEBAS NO PARAMÉTRICAS. PROBLEMA DE APLICACIÓN PARA EL ÁREA DE CAPACITACIÓN
Objetivo: Realizar la prueba de los signos y resolver un problema de aplicación
Alerce Austral (Área de capacitación)
El Director General de Alerce Austral recomendó la elaboración de un programa de capacitación de sus gerentes con el propósito de aumentar sus conocimientos sobre administración de empresas. Se seleccionó aleatoriamente una muestra de 15 gerentes que fueron examinados por un grupo de expertos en administración, Estos determinaron el nivel general de conocimientos de cada gerente participante en relación con el tema de capacitación. La gerencia y la comprensión sobre el tema se calificaron como “Excelentes”, “Buenas”, “Regulares” o “Deficientes”.
El programa de capacitación duró tres meses. Posteriormente, el mismo equipo de expertos en administración de empresas volvió a evaluar y a calificar a cada uno de los gerentes que completaron la capacitación.
La tabla contiene las calificaciones obtenidas antes y después de la capacitación- El signo + indica que el gerente mejoró en sus competencias y en su comprensión de gente después del programa de capacitación.
Respuestas a la pregunta
El método estadístico empleado es no parametrico, llamado prueba de los signos y si es efectiva la capacitación de los gerentes
Explicación:
Pruebas no paramétricas:
Alerce Austral (Área de capacitación)
El Director General de Alerce Austral recomendó la elaboración de un programa de capacitación de sus gerentes con el propósito de aumentar sus conocimientos sobre administración de empresas.
La prueba de los signos
Se usa para hacer pruebas de hipótesis acerca de la mediana de una población.
Ho: La Mediana poblacional es igual a un valor dado.
Ha: La mediana es menor (mayor ó distinta) del valor dado.
La prueba estadística está basada en la distribución Binomial con probabilidad de éxito p=0,5, puesto que la probabilidad de que un dato sea mayor o menor que la mediana es 50%.
Para calcular la probabilidad se determinan las diferencias de los datos con respecto al valor dado de la mediana y se cuentan los signos positivos y negativos.
Mediana = 15/2 = 7,5
Datos (+) = 11
Datos(-) = 3
Datos neutros (0) = 1
n = 15
Para determinar Z.:
Z= 7,5 -0,5(15)/0,5√15
Z = 0
P = 0,5
Como la probabilidad es mayor a la significancia α = 0,1, se rechaza la hipotesis nula y se acepta la alternativa