Según su valor de R calculado, qué probabilidad tiene su gráfica de ser lineal.
Respuestas a la pregunta
Respuesta:
El coeficiente de correlación r es un valor sin unidades entre -1 y 1. La significancia estadística se indica con un valor p. Por lo tanto, usualmente las correlaciones se escriben con dos números clave: r = y p = . Cuanto más se aproxima r a cero, más débil es la relación lineal.
Respuesta:
La correlación lineal y la regresión lineal simple son métodos estadísticos que estudian la relación lineal existente entre dos variables. Antes de profundizar en cada uno de ellos, conviene destacar algunas diferencias:
La correlación cuantifica como de relacionadas están dos variables, mientras que la regresión lineal consiste en generar una ecuación (modelo) que, basándose en la relación existente entre ambas variables, permita predecir el valor de una a partir de la otra.
El cálculo de la correlación entre dos variables es independiente del orden o asignación de cada variable a X e Y, mide únicamente la relación entre ambas sin considerar dependencias. En el caso de la regresión lineal, el modelo varía según qué variable se considere dependiente de la otra (lo cual no implica causa-efecto).
A nivel experimental, la correlación se suele emplear cuando ninguna de las variables se ha controlado, simplemente se han medido ambas y se desea saber si están relacionadas. En el caso de estudios de regresión lineal, es más común que una de las variables se controle (tiempo, concentración de reactivo, temperatura…) y se mida la otra.
Por norma general, los estudios de correlación lineal preceden a la generación de modelos de regresión lineal. Primero se analiza si ambas variables están correlacionadas y, en caso de estarlo, se procede a generar el modelo de regresión.
Explicación: