Matemáticas, pregunta formulada por luisartsolis14, hace 9 meses

Sean A y B subconjuntos cualesquiera de U. Demuestra lo siguiente:
a) A ⊆ B si y sólo si Bc ⊆ Ac
b) A = B si y sólo si Ac = Bc
c) A ∩ Ac = ∅
d) A⋃Ac = U

Adjuntos:

Respuestas a la pregunta

Contestado por Sara0305
3

Para los conjuntos dados obtenemos que:

Uc = ∅

B∩Ac= {e}

Ac = {c, e}

Bc = {a,c}

A U Ac = U =  {a, b, c, d, e}

A∩ Ac = ∅

La intersección de conjuntos (A∩B): nos da lo que se encuentran en ambos conjuntos, es decir, si tenemos A y B su intersección son los elementos que están en A y en B

La unión de conjuntos (AUB): nos da lo que se encuentran en al menos uno de los conjuntos, es decir, si tenemos A y B su unión son los elementos que están en A o en B, o en ambos

El complemento un conjunto A (Ac): es lo que no esta en el conjunto A pero esta en el conjunto universo.

La diferencia A - B: es tomar todo lo que esta en A pero no esta en B

Tenemos que:

U = {a, b, c, d, e}

A = {a, b, d}

B = {b, d, e}

C = {a, b, e}

Buscamos los solicitado: de acuerdo a la información y teoría dada

Uc = ∅

B∩Ac:

Ac = {c, e}

B∩Ac = {e}

Ac = {c, e}

Bc = {a,c}

A U Ac = U =  {a, b, c, d, e}

A∩ Ac = ∅

Otras preguntas