Sea A = [3,∞), B= (4, ∞) y C = (-∞, 6] El resultado de (B ∩ C)’ es:
Respuestas a la pregunta
Respuesta:Curso Intensivo de Matemáticas. Universidad de Alcalá de Henares (7−07−09)
José María Martínez Mediano
1
TEORÍA DE CONJUNTOS: IDEAS BÁSICAS
Conjuntos
Un conjunto es una colección de objetos. A cada uno de esos objetos se
llama elemento del conjunto.
Un conjunto puede darse enumerando todos y cada uno de los elementos
que lo forman. Cuando tal enumeración sea larga o imposible se recurre a
fórmulas de recurrencia o a expresiones generalistas. Los conjuntos
suelen designarse mediante letras mayúsculas, A, B, C…. Los elementos
del conjunto se escriben entre llaves; así: A = {a, b, c…}.
El conjunto vacío no tiene ningún elemento. Se representa por la letra ∅.
Este conjunto se define como una necesidad teórica; se necesita para
aceptar algunas propiedades.
Relación de pertenencia
Un elemento pertenece a un conjunto cuando es de él. Si el elemento a
pertenece al conjunto A se escribe a ∈ A. Si el elemento p no pertenece
al conjunto A se escribe p ∉ A.
Ejemplos:
a) El conjunto de los resultados que se obtienen al tirar un dado con las
caras numeradas del 1 al 6 es E = {1, 2, 3, 4, 5, 6}.
El elemento 7∉ E.
b) El conjunto de los números naturales es N = {1, 2, 3, …}.
El número 10 ∈ N, pero 3,2 ∉ N.
c) De manera inconcreta nos podemos referir al “conjunto de objetos que
una persona lleva en una bolsa”; al “conjunto de personas que trabajan en
un edificio”.
d) Con las letras Z, Q y R se designan los conjuntos de los números
enteros, racionales y reales, respectivamente.
e) La expresión R − {−2, 3} indica el conjunto de todos los números
reales menos los números −2 y 3.
Explicación paso a paso: