Estadística y Cálculo, pregunta formulada por kaasrohe, hace 8 meses

Se seleccionó una muestra aleatoria de 21 ingenieros de un
grupo mayor que labora para un fabricante de un equipo
electrónico. La desviación estándar de la muestra de las horas
de trabajo por semana fue de 7 horas. Determinar un intervalo
de confianza de 90% para la varianza de la población de las
horas de trabajo para todos los ingenieros que laboran para el
fabricante, al suponer que estas mediciones tienen una
distribución normal.

Respuestas a la pregunta

Contestado por luismgalli
2

El intervalo  de confianza de 90% para la varianza de la población de las horas de trabajo es:

(μ)90% = μ ± 7,40

Explicación:

Intervalo de confianza

(μ) 1-α = μ ± Zα/2*σ/ √n

Datos:

n= 21

σ = 7

Intervalo de confianza es de 90%

Nivel de significancia

α = 1-0,9 = 0,1

Zα/2 = 0,1/2= 0,05 Valor que ubicamos en la tabla de de distribución normal

(μ)90% = μ ±  1,65 *7/√21

(μ)90% = μ ± 7,40

Otras preguntas