Se reparte una cantidad de 34.000euros entre tres ayuntamientos para hacer obras de jardinería. El segundo ayuntamiento recibe el doble que el tercero menos 3.000 euros y el primero recibe tanto como los dos juntos menos 2.000 euros. ¿Cuánto recibe cada uno?
Respuestas a la pregunta
Respuesta:
El ayuntamiento 1 recibe 16000 euros;
El ayuntamiento 2 recibe 11000 euros;
El ayuntamiento 3 recibe 7000 euros.
Explicación paso a paso:
ayuntamiento 1: x
ayuntamiento 2: y
ayuntamiento 3: z
y = 2z - 3000 (ecuación 1)
x = y + z - 2000 (ecuación 2)
x + y + z = 34000 (ecuación general)
Utilizaremos la Ec. 2 y la Ec. general para hallar el valor recibido por el primero ayuntamiento.
Despejamos la ecuación 2 y la reemplazamos en la ecuación general para despejar una variable, así:
x = y + z - 2000 (ecuación 2)
y + z = x + 2000 (ecuación 3)
x + y + z = 34000
x + (x + 2000) = 34000
x + x = 34000 - 2000
2x = 32000
x = 32000/2 = 16000
x = 16000 (valor recibido por el primer ayuntamiento)
Con este valor hallado lo reemplazamos en la ecuación 3
y + z = x + 2000 (ecuación 3)
y + z = 16000 + 2000
y + z = 18000 (valor recibido por el segundo y tercer ayuntamiento)
Ahora despejamos en esta nueva ecuación la 'z' para reemplazarla en la ecuación 1 y así hallar el valor de 'y'
y + z = 18000
z = 18000 - y (ecuación 4)
Reemplazando la Ec. 4 en la Ec. 1
y = 2z - 3000 (ecuación 1)
y = 2(18000-y) - 3000
y = 36000 - 2y - 3000
y + 2y = 36000 - 3000
3y = 33000
y = 11000 (valor recibido por el ayuntamiento 2)
Luego, reemplazamos el valor de 'y' en la ecuación 4 y así hallar 'z':
z = 18000 - y (ecuación 4)
z = 18000 - (11000)
z = 7000 (valor recibido por el ayuntamiento 3)