Se quiere mezclar dos tipos de leche: una de $1700 el litro y otra de $1840 el litro, de modo que
la mezcla de 700 litros les sale a $1800 el litro. ¿Cuántos litros de leche de cada clase se
mezclan?
Sea x la cantidad de leche de $1700 el litro
Si en total hay 700 litros, entonces 700-x se requieren de $1840
Respuestas a la pregunta
Respuesta:
200 litros de $1700
500 litros de $1840
Explicación paso a paso:
regla de Mezclas
una mezcla es la reunión o agregación de 2 o más ingredientes o sustancias entre las cuales no hay interacción química.
formula
C1.P1 + C2 .P2
Pm = ----------------------------------
C1 + C2
donde
Pm es el precio medio o precio de la mezcla
C1 y C2 son las cantidades
P1 y P2 son los precios unitarios
--
resolvemos el problema:
usamos la formula y reemplazamos datos
$1700.(x) + $1840 .(700 - x)
$1800 = ----------------------------------------------
700
resolvemos
$1800.(700) = $1700.(x) + $1840 .(700 - x)
180.(700) = 170.(x) + 184 .(700 - x)
126000 = 170x + 128800 - 184x
184x - 170x = 128800 - 126000
14x = 2800
x = 2800/14
x = 200
--
piden ¿Cuántos litros de leche de cada clase se mezclan?
de $1700 se mezclan x litros
reemplazamos x = 200 litros
de $1840 se mezclan (700 - x) litros
reemplazamos (700 - 200) litros = 500 litros