Matemáticas, pregunta formulada por josethllumiquinga7, hace 2 meses

se lanza un cuerpo con una rapidez de 50m/s y un ángulo de 40 ° sobre horizontal calcular la posición del proyectil alos 4s del lanzamiento y el instante en el que el cuerpo alcanza el punto mas alto de su trayectori​

Respuestas a la pregunta

Contestado por blancaramirez131974
1

Explicación paso a paso:

se lanza un cuerpo con una rapidez de 50m/s y un ángulo de 40⁰sobre la horizontal calcular

Contestado por LeonardoDY
1

A los 4 segundos del lanzamiento el proyectil está a 153 metros del punto de lanzamiento y a 50,2 metros de altura, y la altura máxima se alcanza al cabo de 3,28 segundos.

¿Cómo hallar la posición a los 4 segundos?

El movimiento conocido como tiro oblicuo está formado por un movimiento rectilíneo uniforme en la posición horizontal y un movimiento uniformemente acelerado en la posición vertical. Las ecuaciones de los movimientos son las siguientes:

x=v_0.cos(\theta).t\\\\y=v_0.sen(\theta).t-\frac{1}{2}gt^2

Donde v0 es la velocidad inicial de lanzamiento, g es la aceleración gravitatoria y \theta es el ángulo sobre la horizontal de la velocidad inicial. Solo tenemos que hacer t=4s en esas ecuaciones:

x=50\frac{m}{s}.cos(40\°).4s=153m\\y=50\frac{m}{s}.sen(40\°).4s-\frac{1}{2}.9,8\frac{m}{s^2}.(4s)^2=50,2m

Es decir, está a 153 metros del punto de lanzamiento y a 50,2 metros de altura.

¿Cómo hallar el instante en que la altura es máxima?

Solo tenemos que igualar a cero la componente vertical de la velocidad, cuya ecuación es:

v_y=v_0.sen(\theta)-gt

Y despejar el tiempo:

0=v_0.sen(\theta)-gt\\\\t=\frac{v_0.sen(\theta)}{g}=\frac{50\frac{m}{s}.sen(40\°)}{9,81\frac{m}{s^2}}=3,28s

Aprende más sobre tiro oblicuo en brainly.lat/tarea/10942580

Adjuntos:
Otras preguntas