Matemáticas, pregunta formulada por dvdkell, hace 1 año

se dispone de 24 kg de maní y 15 kg de pasas que se envasan en dos tipos de cajas :la de $4,que contiene 200 g de maní y 100 g de pasas y la $ 6, que contiene 200g de maní y 300g de pasas ¿cuantas cajas de cada tipo se tendrán que preparar y vender para obtener el máximo?​

Respuestas a la pregunta

Contestado por luismgalli
22

Se requiere preparar 105 cajas del tipo A y 15 cajas del Tipo, para venderlas a $4 y $6 respectivamente

Sistema de ecuaciones

x: cantidad de cajas Tipo A

y: cantidad de cajas tipo B

x: cuesta $4

y: cuest $6

200x +200y = 24000

100x+300y = 15000

¿cuantas cajas de cada tipo se tendrán que preparar y vender para obtener el máximo?​

Para determina la máxima cantidad de cajas de cada tipo que se puede obtener: despejamos una incógnita de la primera ecuación y sustituimos en la segunda

x= (24000-200y)/200

100 (24000-200y/)200 +300y = 15000

2400000-20.000y +60.000y = 3000000

40.000y = 600.000

y = 15

x = 24000-200*15 /200

x = 105

Se requiere preparar 105 cajas del tipo A y 15 cajas del Tipo, para venderlas a $4 y $6 respectivamente

Otras preguntas