se desplaza con una aceleración constante a 3(cm/s²) calcular la velocidad q adquiere y el espacio que recorre al cabo es 3(s)
Respuestas a la pregunta
Se supone que la velocidad inicial es nula. Entonces:
V = a t = 3 cm/s² . 3 s = 9 cm/s
e = 1/2 a t² = 1/2 . 3 m/s² (3 s)² = 13,5 cm
Saludos.
Respuesta:
ExpSe encontraran a las 3 de la tarde porque parten a las 9 de la mañana y transcurren seis horas hasta el encuentro.
La distancia recorrida por cada coche
Para encontrar la distancia recorrida por cada coche, sustituimos el tiempo {t=6 \, h} en la fórmula de espacio recorrido: {e_{AB} = (90)(6)}= 540, {e_{BC} = (60)(6)}= 360. De esta forma tenemos que el primer coche recorre {540 \, km} y el segundo coche recorre {360 \, km.}
3. Los móviles parten del mismo punto y con el mismo sentido
{e_{1}=e_{2}}
El espacio recorrido por el primer vehículo es igual al espacio recorrido por el segundo.
Ejemplo:
Un coche sale de la ciudad {A} con velocidad de {90, km/h}. Tres horas más tarde sale de la misma ciudad otro coche en persecución del primero con una velocidad de {120 \, km/h}. Hallar el tiempo que tardará el segundo coche en alcanzar al primero; la distancia a la que se produce el encuentro.
El tiempo que tardará el segundo coche en alcanzar al primero.
1 Si el tiempo empleado por el primer coche es {t}, el del segundo que sale tres horas más tarde será {t-3}.
Sustituimos en la fórmula de espacio y obtenemos
{e_{1}= 90 t,}
{e_{2}=120(t-3)}
2 Sabemos que el espacio recorrido por ambos coches es el mismo
{\begin{array}{rcl} e_{1} & = & e_{2} \\ && \\ 90t & = & 120(t-3) \end{array}}
3 Resolvemos la ecuación anterior
{ \begin{array}{rcl} 90t & = & 120(t-3) \\ & & \\ -30t & = & -360 \\ & \\ t & = & \displaystyle\frac{-360}{-30} \\ & & \\ t & = & 12 \end{array}}
El primer coche tarda {12 \, h}.
El segundo coche tarda {(12-3) = 9 \, h}.
La distancia a la que se produce el encuentro.
Calculamos el espacio recorrido por uno de los dos coches
{e_{1} = 90 \cdot 12 = 1080 \, km.}
licación: