Matemáticas, pregunta formulada por claraviolin11, hace 1 año

Se desea embaldosar una sala de 30 m de largo por 8 m de ancho con baldosas cuadradas cuyo tamaño sea el mayor posible. ¿Cuáles serán las dimensiones de una de esas baldosas? ¿Cuántas baldosas harán falta en total? 

Respuestas a la pregunta

Contestado por preju
6
El lado de la baldosa cuadrada mayor posible se calcula extrayendo el máximo común divisor de las dos dimensiones de la sala.

mcd (30 y 8) = 2

Por tanto, la mayor baldosa cuadrada que puede colocarse sin que sobre ni falte espacio es de 2 m. de lado. (Respuesta a la 1ª pregunta)

El nº de baldosas necesarias sale de calcular primero la superficie de la sala multiplicando sus dimensiones: 30 x 8 = 240 m²

Y como una baldosa ocupa una superficie de 2x2 = 4 m
², ... dividiendo...

240
: 4 = 60 baldosas es la respuesta a la 2ª pregunta.

Saludos.

claraviolin11: Muchísimas gracias!
claraviolin11: Tu comentario me ha servido :) No sabía cómo hacer la 2a pregunta y, gracias a ti, ya comprendo qué hacer y cómo plantearlo. Mil gracias!
preju: Pues yo te aseguro que me has alegrado el día diciéndome que te he ayudado. Un saludo desde Valencia.
Otras preguntas