se desea construir un conjunto habilitacional sobre un terreno rectangular que tiene un area de 5400 metros cuadrados y un perimetro de 300m ¿que dimenciones tiene el terreno?
Respuestas a la pregunta
Contestado por
15
###
=> Primero reemplazamos los números desconocidos por variables y les ponemos "x" y "y"...
=> Ahora, usando las variables planteamos las operaciones de el área y perímetro:
x * y = 5400
2x + 2y = 300
=> Operamos la primera ecuación para poder tener un valor para "x":
x * y = 5400
x =
=> Reemplazamos el valor obtenido en la segunda ecuación:
2x + 2y = 300
2 ( ) + 2y = 300
+ 2y = 300
+ 10800 = 300y ----> Multiplicamos ambos lados por "y"
- 300y + 10800 = 0 ----> Pasamos todos los datos a un lado
- 150y + 5400 = 0 ----> Simplificamos (dividiendo entre 2)
=> Operando esto nos quedaría lo siguiente:
(y - 90) (y - 60) = 0
=> Ahora igualamos ambas cantidades a 0
y - 90 = 0 y - 60 = 0
y = 90 y = 60
=> Con esto finalmente tendríamos el resultado x''D
Rpta:_ El terreno tendría las dimensiones de 90m y 60m
Saludos ʕ•́ᴥ•̀ʔっ ⭐
=> Primero reemplazamos los números desconocidos por variables y les ponemos "x" y "y"...
=> Ahora, usando las variables planteamos las operaciones de el área y perímetro:
x * y = 5400
2x + 2y = 300
=> Operamos la primera ecuación para poder tener un valor para "x":
x * y = 5400
x =
=> Reemplazamos el valor obtenido en la segunda ecuación:
2x + 2y = 300
2 ( ) + 2y = 300
+ 2y = 300
+ 10800 = 300y ----> Multiplicamos ambos lados por "y"
- 300y + 10800 = 0 ----> Pasamos todos los datos a un lado
- 150y + 5400 = 0 ----> Simplificamos (dividiendo entre 2)
=> Operando esto nos quedaría lo siguiente:
(y - 90) (y - 60) = 0
=> Ahora igualamos ambas cantidades a 0
y - 90 = 0 y - 60 = 0
y = 90 y = 60
=> Con esto finalmente tendríamos el resultado x''D
Rpta:_ El terreno tendría las dimensiones de 90m y 60m
Saludos ʕ•́ᴥ•̀ʔっ ⭐
Otras preguntas