Matemáticas, pregunta formulada por edwrad22, hace 1 año

Se desea calcular la altura de la torre, para ello se miden los


ángulos de elevación desde los puntos A y B. Con los datos de la


figura, ¿Cuál es la altura de la torre?


Porfa lo necesito para hoy y procedimiento

Adjuntos:

Respuestas a la pregunta

Contestado por luchosachi
58

Respuesta:

La altura de la torre es: 10.89 m

Explicación paso a paso:

Trabajamos bajo el supuesto de que la altura forma ángulo de 90 con la horizontal.

Pongamos vértices: C en el extremo superior de la torre y D en su base, para identificar dos triángulos rectángulos: Uno grande ΔACD y otro pequeño ΔBCD.  

En el triángulo grande ACD, la hipotenusa es el lado AC. Un cateto es “h” (ten cuidado de no confundir esa “h” con hipotenusa, pues se trata de la altura) y el otro cateto es 10+X

En el triángulo pequeño ΔBCD, la hipotenusa es el lado BC. Un cateto es “h” y el otro cateto es X

Necesitamos averiguar h, que es común a los dos triángulos y ambos tienen un ángulo conocido, el del triángulo grande es de 35° y el del pequeño es de 63°.

Al observar el cateto “h” en relación con los ángulos de elevación, encontramos que podemos aplicar la razón tangente, que es igual a cateto opuesto o sea “h” sobre cateto adyacente, que es 10+X para el triángulo grande y X para el pequeño.

Planteamos entonces:

Para ΔACD:   tan35°=h/(10+x)  ∴ h=tan35(10+x)

Para ΔBCD:  tan63°=h/x  ∴ h=tan63(x)

Tenemos dos cantidades iguales a “h”, por tanto aplicamos igualación:

tan35(10+x)=tan63(x)

Resolvemos la parte izquierda

10*tan35+x*tan35=x*tan63  

10*0.7002075382+0.7002075382x=1.962610506x

7.002075382+0.7002075382x=1.962610506x

7.002075382=1.962610506x-0.7002075382x

7.002075382=1.262402968x

x=7.002075382/1.26240296

X= 5.546624655 m

X= 5.55 metros

Ahora que conocemos X, podemos saber la medida del cateto AD del triángulo grande:

AD=10+5.55

AD=15.55 m

Aplicamos nuevamente la razón tangente, para saber la medida de h

tan35°=h/15.55  ∴ h=tan35(15.55) ∴ h=10.89 m (redondeando)

La altura es 10.89 m

Verifiquemos o comprobemos ahora con el triángulo pequeño:

tan63°=h/5.55  ∴ h=tan63(5.55) ∴ h=10.89 m . Da el mismo valor

Contestado por mgepar
14

La altura de la torre se corresponde con 10,87 metros.

Característica de un triángulo.

Un triángulo es una figura geométrica plana formada por la intersección de tres líneas rectas. Un triángulo se caracteriza por estar compuesto por tres vértices, tres lados y tres ángulos.

En nuestro caso, se tienen triángulos rectángulos, al cual se le pueden aplicar razones trigonométricas para hallar la incógnita pedida. Se procede de la siguiente manera:

  • Para el triángulo mayor: tan(35º) = h/(x + 10)  ⇒ h = (x + 10).tan(35º) =   (x + 10).0,7 = 0,7x + 7
  • Para el triángulo menor: tan(63º) = h/x  ⇒ h = x.tan(63º) =   1,96x
  • Despejando x en la ecuación anterior: x = h/1,96 = 0,51h
  • Sustituyendo: h = 0,7.0,51h + 7 = 0,357h + 7  ⇒  h - 0,356h = 7  ⇒  0,644h = 7  ⇒  h = 7/0,644 = 10,87  ⇒ 10,87 metros

Para conocer más acerca de triángulos, visita:

brainly.lat/tarea/44720929

Adjuntos:
Otras preguntas