Física, pregunta formulada por keyla749, hace 1 mes

Se deja caer una piedra desde un edificio de 46.00 metros de altura.

¿Cuánto tiempo tardo en llegar al suelo? ¿Cuál fue la velocidad al momento de chocar contra el piso?

Respuestas a la pregunta

Contestado por arkyta
2

La piedra emplea 3.06 segundos en llegar al suelo

La velocidad con la cual la piedra llega al suelo es de 30 metros por segundo (m/s)

Se trata de un problema de caída libre

En la caída libre un objeto cae verticalmente desde cierta altura H

Se trata de un movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) en el que la aceleración coincide con el valor de la gravedad. Con aceleración constante hacia abajo, debida al efecto de la gravedad

Donde la velocidad cambia continuamente, dado que el proyectil acelera en su descenso. Y se constata que el cambio de velocidad es el mismo en cada intervalo de tiempo, por ser la aceleración constante

Estableciendo un sistema de referencia donde el eje de coordenadas es vertical, dado que el cuerpo siempre se encuentra sobre el eje Y

Donde no presenta el proyectil velocidad inicial \bold  { V_{y}   = 0    } , dado que parte del reposo, luego esa velocidad se va incrementando a medida que el proyectil desciende.

Inicialmente su posición es \bold  {y_{0}   = H    }

Datos:

\bold{V_{0y} = 0 \ \frac{m}{s}  }

\bold{H = 46 \ m  }

\bold{a =g = 9.8 \ \frac{m}{s^{2} }  }

Calculamos el tiempo de vuelo de la piedra

Dado que en el eje Y se tiene un MRUV empleamos la siguiente ecuación:

\bold{V_{0y} = 0 }

\large\boxed {\bold  {    y =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\bold {y = 0}

\boxed {\bold  {    0 =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\large \textsf{Donde despejamos el tiempo }

\boxed {\bold  {    H = \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\boxed {\bold  {   H =  \frac{ g  \ . \ t^{2}    }{2}  }}

\boxed {\bold  {   2\ .\ H =g  \ . \ t^{2}     }}

\boxed {\bold  {  t^{2}  =  \frac{ 2 \ .  \ H \   }{g}  }}

\boxed {\bold  {   t  = \sqrt{  \frac{ 2  \ . \ H    }{g}     }      }}

Considerando la altura H desde donde se soltó el cuerpo \bold{H = 46\ metros}

\large\textsf{Consideramos el valor de la gravedad de  } \bold   {9.8 \ \frac {m}       {s^{2}  }     }

\boxed {\bold  {   t  = \sqrt{  \frac{ 2  \ . \ 46 \ m     }{9.8 \ \frac{m}{s^{2} }  }     }      }}

\boxed {\bold  {   t  = \sqrt{  \frac{ 92  \not m     }{9.8\ \frac{\not m}{s^{2} }  }     }      }}

\boxed {\bold  {   t  = \sqrt{ 9.3877551020408 \  s^{2} }           }}

\boxed {\bold  {   t  =  3.0639 \ segundos             }}

\large\boxed {\bold  {   t  =  3.06 \ segundos             }}

El tiempo de vuelo de la piedra es de 3.06 segundos, llegando al suelo para ese instante de tiempo

Determinamos la velocidad con la cual la piedra llega al suelo

Empleamos la siguiente ecuación de MRUV

\large\boxed {\bold { V_{f}   = V_{0}   +   \ g \ .\ t }}

Donde

\bold  { V_{f} } \ \ \ \  \ \  \textsf{ Es la velocidad final }

\bold  { V_{0}}  \ \ \ \  \ \  \textsf{ Es la velocidad inicial }

\bold  { g }\ \ \ \ \ \  \ \  \textsf{ Es la aceleraci\'on}

\bold  { t} \ \ \ \ \ \ \  \  \   \textsf{ Es el tiempo }

Como en una caída libre el cuerpo parte del reposo por tanto la velocidad inicial es igual a cero \bold {V_{0} = 0  }

\large\textsf{ Quedando la ecuaci\'on reducida a:}

\large\boxed {\bold { V_{f}   =   \ g \ .\ t }}

Por lo tanto la velocidad final depende de la gravedad y el tiempo de vuelo

\large\textsf{Tomamos el tiempo de vuelo de 3.06 segundos  }

\boxed {\bold  {V_{f}  =  {V_{y}    =g . \ t }}}

\large\textsf{ Reemplazamos valores y resolvemos }

\boxed {\bold  {  {V_{y}    =9.8 \  \frac{m}{s^{\not2} }  \  . \ 3.06 \not s    }}}

\boxed {\bold  {  {V_{y}    =29.988 \  \frac{m}{s} \approx  29.99 \  \frac{m}{s}  }}}

\textsf{ Redondeando por exceso }

\large\boxed {\bold  {  {V_{y}    =30 \  \frac{m}{s}   }}}

Luego la velocidad con que la cual la piedra llega al suelo es de 30 metros por segundo (m/s)

Otras preguntas