Matemáticas, pregunta formulada por domeps72, hace 9 meses

Resuelve por el método Igualación 2x+3y=2 -6x+12y=1 ayudaa plis doy coronita

Respuestas a la pregunta

Contestado por Usuario anónimo
3

                   Sistema De Ecuaciones

Resolvemos usando el método de Igualación el siguiente sistema de ecuación:

\large \boxed{\bold{\left \{ {{2x+3y=2\ \ \longleftarrow\  Ec. 1} \atop {-6x+12y=2\ \ \longleftarrow\ Ec.2 }} \right. }}

Usamos los pasos:

  • Despejamos una incógnita en las dos ecuaciones.
  • Igualar.
  • Resolver.
  • Sustituir.

I. Despejando "y" en las dos Ec.

1.                                                             2.

     \bold{2x+3y=2}                                           \bold{-6x+12y=2}

      \bold{3y=2-2x}                                           \bold{12y=2+6x}

       \boxed{\bold{y=\frac{2-2x}{2} }}                                           \boxed{\bold{y=\dfrac{2+6x}{12} }}

II. Igualando.

\bold{\dfrac{2-2x}{2}=\dfrac{2+6x}{12}}

  • Multiplicamos en aspa:

\bold{\left(2-2x\right)\cdot \:12=2\left(2+6x\right)}

  • Resolvemos:

\bold{24-24x=4+12x}

  • 24 pasa a restar:

\bold{-24x=12x-20}

  • 12x pasa restando:

\bold{-36x=-20}

  • Despejando:

\bold{x=\dfrac{-20}{-36}}

  • Simplificamos por ley de signos:

\boxed{\bold{x=\frac{5}{9}}}\longleftarrow \mathfrak{Respuesta}

III. Sustituyendo.

Teniendo el resultado de "x", entonces reemplazamos en cualquier ecuación despejada para así hallar "y".

Ecuación 1:

\bold{y=\dfrac{2-2\left(\dfrac{5}{9}\right) }{2} }

  • Multiplicamos:

\bold{y=\dfrac{2-\dfrac{10}{9}}{2}}

  • Efectuamos la resta:

\bold{y=\dfrac{\dfrac{8}{9}}{2}}

  • Por propiedad:

\bold{y=\dfrac{8}{9\cdot \:2}}

  • Resolvemos en el numerador:

\bold{y=\dfrac{8}{18}}}

  • Simplificamos; SACANDO MITAD:

\boxed{\bold{y=\frac{4}{9}}}\longleftarrow\mathfrak{Respuesta}

Entonces:

x = 5/9

y = 4/9


franciscogabrielnet: ¿Por qué cuando 3 estaba multiplicando la x lo pasaste dividiendo como un 2? No entiendo
franciscogabrielnet: Cuando ibas a despejar la y
franciscogabrielnet: Eres un crack, cualquiera se equivoca
Otras preguntas