Matemáticas, pregunta formulada por 19736388, hace 5 meses

resuelve los sistemas de ecuaciones aplicando el método de sustitución​

Adjuntos:

19736388: ayuda es para hoy

Respuestas a la pregunta

Contestado por wernser412
4

Respuesta:    

La solución del sistema es x=7 , y=6      

     

Explicación paso a paso:    

Método por sustitución:      

x-3y=-11  

4x+2y=40  

     

Despejamos en la primera ecuación la x:      

x-3y=-11      

x=-11+3y            

     

Y la sustituimos en la segunda:      

4x+2y=40      

4(-11+3y)+2y=40      

-44+12y+2y=40      

12y+2y=40+44      

14y=84      

y=84/14      

y=6      

     

Calculamos x sabiendo y= 6 :      

x-3y=-11      

x-3(6)=-11      

x-18=-11      

x=-11+18      

x=7          

     

Por lo tanto, la solución del sistema es x=7 , y=6      

----------------------

Respuesta:    

La solución del sistema es x=-3 , y=-11    

     

Explicación paso a paso:    

Método por sustitución:      

y = 2x - 5

y = 5x +4

Sustituimos la primera ecuación en la segunda:

y = 5x +4

2x - 5 = 5x +4

2x - 5x = 4 +5

-3x = 9

x = 9/-3

x = -3

Calculamos y sabiendo x= -3 :

y = 2x - 5

y = 2(-3) - 5

y = -6 - 5

y = -11

Por lo tanto, la solución del sistema es x=-3 , y=-11

Otras preguntas