resuelve los siguientes sistemas de ecuaciones a travez del metodo de situacion
Respuestas a la pregunta
De acuerdo a los sistemas de ecuaciones indicados y utilizando el método de sustitución para resolver dichos sistemas de ecuaciones, tenemos:
- Sistema b:
x = 3
y = 5
- Sistema c:
x = 12
y = 8
¿ Cómo se aplica el método de sustitución para la resolución de sistemas de ecuaciones ?
La aplicación del método de sustitución para la resolución de sistemas de ecuaciones consiste en despejar una de las variables de una de las ecuaciones y reemplazar la expresión de la variable en las otras ecuaciones, tal como se muestra a continuación:
- Sistema b:
Despejando x de la primera ecuación:
7*x - 4*y = 1 ⇒ x = ( 1 / 7 )*( 1 + 4*y )
Reemplazando x en la segunda ecuación:
6*x + y = 23 ⇒ 6*( 1 / 7 )*( 1 + 4*y ) + y = 23
Resolviendo para calcular y:
( 6 / 7 ) + ( 24*y / 7 ) + y = 23
31*y = 155
y = 5
Resolviendo para calcular x:
7*x - 4*5 = 1
7*x - 20 = 1
x = 21 / 7
x = 3
- Sistema c:
Despejando x de la primera ecuación:
5*x - 4*y = 28 ⇒ x = ( 1 / 5 )*( 28 + 4*y )
Reemplazando x en la segunda ecuación:
x - 3*y = - 12 ⇒ ( 1 / 5 )*( 28 + 4*y ) - 3*y = - 12
Resolviendo para calcular y:
( 28 / 5 ) + ( 4 / 5 )*y - 3*y = - 12
- ( 11*y ) / 5 = - 12 - ( 28 / 5 )
- ( 11*y ) = - 88
y = 8
Resolviendo para calcular x:
5*x - 4*8 = 28
5*x - 32 = 28
5*x = 60
x = 12
Más sobre sustitución aquí:
https://brainly.lat/tarea/21804574
#SPJ1