Matemáticas, pregunta formulada por wg26472676, hace 7 meses

resuelve los ejercicios con un procedimiento exacto a.
 \sqrt{5}. \sqrt{2} = \sqrt{10}
 \frac{ \sqrt[3]{12} }{ \sqrt[3]{6} }  =   \sqrt[3]{ \frac{12}{6} }  =  \sqrt[3]{2}
 \sqrt[3]{2}. \sqrt[5]{2}

Respuestas a la pregunta

Contestado por miriangracielaenciso
0

Respuesta:

no entiendo se ve todo extrañó

Contestado por liaestefani1001v
1

Respuesta:

 \sqrt[15]{256}

Explicación paso a paso:

 \sqrt[3]{2}  \times  \sqrt[5]{2}  \\

  • Para poder multiplicar las bases, el índice de la raíz tiene que ser igual, entonces buscamos dos números y al multiplicar los elevarlo también a la base, para que no afecte. En este caso sería 3 y 5

 \sqrt[3 \times 5]{ {2}^{5} }  \times  \sqrt[5 \times 3]{ {2}^{3} }  \\

Multiplicamos:

 \sqrt[15]{ {2}^{5} }  \times  \sqrt[15]{ {2}^{3} }

  • Cómo las raíces son iguales, procedemos a multiplicar:

 \sqrt[15]{ {2}^{5} \times  {2}^{3}  }

  • Bases iguales los exponentes se suman:

 \sqrt[15]{ {2}^{5 + 3}  }  \\  \sqrt[15]{ {2}^{8} }  \\  \sqrt[15]{256}

Espero que te sirva !)

Otras preguntas