Resolver las siguientes ecuaciones de segundo grado utilizando la fórmula general:
1.
2 − 5 + 6 = 0
2. 2
2 − 7 + 3 = 0
3. −
2 + 7 − 10 = 0
4.
2 − 2 + 1 = 0
5.
2 + + 1 = 0
6.
2 − 4 + 4 = 0
7.
2 − 5 + 6 = 0
8. 7
2 + 21 − 28 = 0
9.
2 + (7 − )
2 = 25
10.
2 + 3 + 2 = 0
Respuestas a la pregunta
1. x² - 5x + 6 = 0
a = 1
b = -5
c = 6
x = -b ± √b² - 4ac / 2a
x = -(-5) ± √(-5)² - 4 (1) (6) / 2
x = 5 ± √25 - 24/2
x = 5 ± √1/2
x = 5 ± 1/2
x1 = 5 + 1/2 = 3
x2 = 5 - 2/3 = 1
2. 2x² - 7x + 3 = 0
a =2
b = -7
c = 3
x = -b ± √b² - 4ac / 2a
x = -(-7) ± √(-7)² - 4 (2) (3) / 2(2)
x = 7 ± √49 - 24/ 4
x = 7 ± √25/4
x = 7 ± 5/4
x1 = 7 + 5/4 = 3
x2 = 7 - 5/4 = 1/2
Verificación
2x² - 7x + 3 = 0
2(3)² - 7(3) + 3 = 0
2 (9) - 21 + 3 = 0
18 - 21 + 3 = 0
21 - 21 = 0
0 = 0
2x² - 7x + 3 = 0
2(1/2)² - 7(1/2) + 3 = 0
2(1/4) - 7/2 + 3 = 0
1/2 - 7/2 + 3 = 0
-6/2 + 3 = 0
-3 + 3 = 0
0 = 0
3. -x² + 7x - 10 = 0
a = -1
b = 7
c = -10
x = -b ± √b² - 4ac / 2a
x = -7 ± √7² - 4 (-1) (-10) / 2(-1)
x = -7 ± √49 - 40/ -2
x = -7 ± √9/ -2
x = -7 ± 3/-2
x1 = -7 + 3/-2 = 2
x2 = -7 - 3/-2 = 5
4. x² - 2x + 1 = 0
a = 1
b = -2
c = 1
x = -b ± √b² - 4ac / 2a
x = -(-2) ± √(-2)² - 4 (1) (1) / 2(1)
x = 2 ± √4 - 4/2
x = 2 ± 0/2
x1 = 2 + 0/2 = 1
x2 = 2 - 0/2 = 1
Verificación
x² - 2x + 1 = 0
(1)² - 2(1) + 1 = 0
1 - 2 + 1 = 0
2 - 2 = 0
0 = 0
5. x² + x + 1 = 0
a = 1
b = 1
c = 1
x = -b ± √b² - 4ac / 2a
x = -1 ± √1² - 4 (1) (1) / 2
x = -1 ± √1 - 4/2
x = -1 + √-3/2
x1 = -1 + √-3/2
x2 = -1 - √-3/2
6. x² - 4x + 4 = 0
a = 1
b = -4
c = 4
x = -b ± √b² - 4ac / 2a
x = -(-4) ± √(-4)² - 4 (1) (4) / 2(1)
x = 4 ± √16 - 16/2
x = 4 ± 0/2
x1 = 4 + 0/2 = 2
x2 = 4 - 0/2 = 2
Verificación
x² - 4x + 4 = 0
(2)² - 4(2) + 4 = 0
4 - 8 + 4 = 0
8 - 8 = 0
0 = 0
7. x² - 5x + 6 = 0
a = 1
b = -5
c = 6
x = -b ± √b² - 4ac / 2a
x = -(-5) ± √(-5)² - 4 (1) (6) /2(1)
x = 5 ± √25 - 24/2
x = 5 ± √1/2
x = 5 ± 1/2
x1 = 5 + 1/2 = 3
x2 = 5 - 1/2 = 2
8. 7x² + 21x - 28 = 0
a = 7
b = 21
c = -28
x = -b ± √b² - 4ac / 2a
x = -21 + √21² - 4 (7) (-28) / 2(7)
x = -21 ± √441 - (-784) / 14
x = -21 ± √441 + 784 /14
x = -21 ± √1225/14
x = -21 ± 35/14
x1 = -21 + 35/14 = 1
x2 = -21 - 35/14 = -4
Verificación
7x² + 21x - 28 = 0
7(1)² + 21(1) - 28 = 0
7 + 21 - 28 = 0
28 - 28 = 0
0 = 0
7x² + 21x - 28 = 0
7(-4)² + 21(-4) - 28 = 0
7 (16) - 84 - 28 = 0
112 - 112 = 0
0 = 0
9. x² + (7 - x)² = 25
x² + (7² - 2 (x) (7) + x²) = 25
x² + (49 - 14x + x²) - 25 = 0
x² + x² - 14x + 49 - 25 = 0
2x² - 14x + 24 = 0
a = 2
b = -14
c = 24
x = -b ± √b² - 4ac / 2a
x = -(-14) ± √(-14)² - 4 (2) (24) / 2(2)
x = 14 ± √196 - 192 / 4
x = 14 ± √4/4
x = 14 ± 2/4
x1 = 14 + 2/4 = 4
x2 = 14 - 2/4 = 3
10. x² + 3x + 2 = 0
a = 1
b = 3
c = 2
x = -b ± √b² - 4ac / 2a
x = -3 ± √(3)² - 4 (1) (2) / 2(1)
x = -3 ± √9 - 8/2
x = -3 ± √1/2
x = -3 ± 1/2
x1 = -3 + 1/2 = -1
x2 = -3 - 1/2 = -2
Verificación
x² + 3x + 2 = 0
(-1)² + 3(-1) + 2 = 0
1 - 3 + 2 = 0
-3 + 3 = 0
0 = 0
x² + 3x + 2 = 0
(-2)² + 3(-2) + 2 = 0
4 - 6 + 2 = 0
6 - 6 = 0
0 = 0
Espero haberte ayudado. Suerte en los estudios ≧◠◡◠≦.