Matemáticas, pregunta formulada por hectorandres1999, hace 1 año

Resolver la ecuación

Adjuntos:

Respuestas a la pregunta

Contestado por MaryaleB
2

La ecuación da como resultado: x=0.84842

Resolución por pasos

2^{3x+1}\cdot \:5^{4x-2}=110

Ley de los exponentes: a=b^{\log _b\left(a\right)}

2^{3x+1}\left(2^{\log _2\left(5\right)}\right)^{4x-2}=110

Ley de los Exponentes: \left(a^b\right)^c=a^{bc}

2^{3x+1}\cdot \:2^{\log _2\left(5\right)\left(4x-2\right)}=110

Ley de los Exponentes :a^b\cdot \:a^c=a^{b+c}

SI f\left(x\right)=g\left(x\right) entonces \ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)

\ln \left(2^{3x+1+\log _2\left(5\right)\left(4x-2\right)}\right)=\ln \left(110\right)

Aplicar propiedad de logaritmo:\log _a\left(x^b\right)=b\cdot \log _a\left(x\right)

\left(3x+1+\log _2\left(5\right)\left(4x-2\right)\right)\ln \left(2\right)=\ln \left(110\right)

Dividir entre \ln \left(2\right)

3x+1+\log _2\left(5\right)\left(4x-2\right)=\frac{\ln \left(110\right)}{\ln \left(2\right)}

3x+\log _2\left(5\right)\left(4x-2\right)=\frac{\ln \left(110\right)}{\ln \left(2\right)}-1

3x+4\log _2\left(5\right)x-2\log _2\left(5\right)=\frac{\ln \left(110\right)}{\ln \left(2\right)}-1

Siempre tratando de despejar x

3x+4\log _2\left(5\right)x=\frac{\ln \left(110\right)}{\ln \left(2\right)}-1+2\log _2\left(5\right)

Factor comun x

\left(3+4\log _2\left(5\right)\right)x=\frac{\ln \left(110\right)}{\ln \left(2\right)}-1+2\log _2\left(5\right)

Dividir ambos lados entre: 3+4\log _2\left(5\right)

\frac{\left(3+4\log _2\left(5\right)\right)x}{3+4\log _2\left(5\right)}=\frac{\frac{\ln \left(110\right)}{\ln \left(2\right)}}{3+4\log _2\left(5\right)}-\frac{1}{3+4\log _2\left(5\right)}+\frac{2\log _2\left(5\right)}{3+4\log _2\left(5\right)}

Simplifico \frac{\left(3+4\log _2\left(5\right)\right)x}{3+4\log _2\left(5\right)}:\quad x

Simplificando: \frac{\frac{\ln \left(110\right)}{\ln \left(2\right)}}{3+4\log _2\left(5\right)}-\frac{1}{3+4\log _2\left(5\right)}+\frac{2\log _2\left(5\right)}{3+4\log _2\left(5\right)}

=\frac{\frac{\ln \left(110\right)}{\ln \left(2\right)}-1+2\log _2\left(5\right)}{3+4\log _2\left(5\right)}

=\frac{\frac{\ln \left(55\right)+2\ln \left(5\right)}{\ln \left(2\right)}}{3+4\log _2\left(5\right)}=\frac{\ln \left(55\right)+2\ln \left(5\right)}{\ln \left(2\right)\left(3+4\log _2\left(5\right)\right)}

=\frac{\ln \left(1375\right)}{\ln \left(2\right)\left(4\log _2\left(5\right)+3\right)}=\frac{\ln \left(1375\right)}{\ln \left(5000\right)}

Entonces:

x=\frac{\ln \left(1375\right)}{\ln \left(5000\right)}

x=0.84842

Otras preguntas