Física, pregunta formulada por Gabriel122006, hace 8 meses

realiza un resumen detallado del método científico y las propiedades fundamentales de la potenciacion ​

Respuestas a la pregunta

Contestado por castillolilia644
2

Respuesta:

Entre el 400 A. C. y el 200 A. C., los matemáticos de la India, en especial Jaina comienzan el estudio de las matemáticas para el exclusivo propósito de las matemáticas. Ellos fueron los primeros en desarrollar los números transfinitos, la teoría de conjuntos, los logaritmos, leyes fundamentales de los índices, ecuaciones cúbicas y cuárticas, sucesiones y progresiones, permutaciones y combinaciones, cuadrados y extracción de la raíz cuadrada y potencias finitas e infinitas.

También pudieron encontrarse cálculos exactos de números irracionales, que incluían raíces cuadradas de números tan grandes como un millón y con once decimales. Carl Friedrich Gauss dio una explicación adecuada del concepto de número complejo; estos números formaron un nuevo y completo campo del análisis. En su tesis doctoral presentó la primera demostración apropiada del teorema fundamental del álgebra. A menudo combinó investigaciones científicas y matemáticas.

Por ejemplo, desarrolló métodos estadísticos al mismo tiempo que investigaba la órbita de un planetoide recién descubierto, realizaba trabajos en teoría de potencias junto a estudios del magnetismo, o estudiaba la geometría de superficies curvas a la vez que desarrollaba sus investigaciones topográficas. Las potencias de un número se obtienen mediante sucesivas multiplicaciones del número por sí mismo. El término a elevado a la tercera potencia

Definición de potencia: La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» ó «a elevado a la n» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo.

Nótese que en el caso de la potenciación la base y el exponente pueden pertenecer a conjuntos diferentes, en un anillo totalmente general la base será un elemento del anillo pero el exponente será un número natural que no tiene porqué pertenecer al anillo. En un cuerpo el exponente puede ser un número entero o cero. Es decir que:

Explicación:

ojalá te funcione si quieres sacar un resumen más corto que ese puedes hacerlo pero pensé que esto es lo más importante a mi opinión buenas tardes!!


Gabriel122006: me sirvió demasiado gracias bbe
Otras preguntas