Ciencias Sociales, pregunta formulada por belloleysa28, hace 1 mes

¿Qué tipo de microscopio electrónico se debe utilizar para el estudio más detallado de las células o polímero o partículas de un catalizador?

Respuestas a la pregunta

Contestado por mariaalexandrapachay
1

Respuesta:

Han pasado más de 340 años desde que Antony Van Leeuwenhoek con la invención de su microscopio simple realizó el descubrimiento de las células espermatozoides en 1677, años en los que se ha ido perfeccionando el sistema de lentes del microscopio compuesto de luz (óptico o de fotones, hasta lograr microscopios tan sofisticados como el de contraste de fases o de fluorescencia; pero en 40 años o un poco más, los científicos lograron perfeccionar el MET. El mundo de las ciencias biológicas se amplió con la invención de la microscopía electrónica y la experiencia fue excitante al lograr ver imágenes del interior de una célula o de partículas de virus amplificadas miles de veces

Keith Porter y colaboradores en 1945 demostraron de manera contundente que el MET podía ser utilizado para observar los detalles del interior de las células con el descubrimiento de lo que años más tarde designaran como retículo endoplásmico (ER).

En la actualidad el microscopio electrónico se ha convertido en una herramienta fundamental en la investigación científica en diferentes áreas de la biología, medicina, materiales y nanopartículas.

¿Por qué utilizar electrones en vez de luz (fotones)?

El poder de resolución es la capacidad de observar con claridad dos objetos extremadamente cercanos, por ejemplo, dos puntos, con total nitidez. Para el ojo humano normal, el máximo poder de resolución sería distinguir claramente dos puntos que se encuentren separados entre sí por la décima parte de 1 mm [100 micrómetros o micras (µm)], el grosor de un cabello humano. El microscopio simple (de una sola lente) de Van Leeuwenhoek, producía una ampliación de hasta 275 veces (275x) con un poder de resolución de 1.4 µm, mayor al poder de resolución de los microscopios compuestos (de varias lentes) de su época.

Para un microscopio óptico compuesto, el poder de resolución máximo es de 0.2 µm o 200 nanómetros (nm), siendo un nanómetro la millonésima parte de 1 mm. Con la ayuda del microscopio compuesto es posible observar células humanas, células vegetales, levaduras, protozoarios, y bacterias logrando aumentos hasta de 1000x. En contraste, con el MET podemos observar objetos más pequeños que 200 nm como los coronavirus. Pero existen virus aún más pequeños como el bacteriófago (Fig. 4), que infecta bacterias. El tamaño de los fagos oscila entre 20 y 200 nm. Sin embargo, existen partículas como los rotavirus causantes de la gastroenteritis que miden aproximadamente entre 70-90 nm, los cuales son aún más pequeños que 100 nm ¡Más pequeños que la longitud de onda más corta de la luz visible (color violeta, 400 nm) y por debajo de los 200 nm!

¿Cómo observar cosas más pequeñas por debajo de los 200 nm, de lo que se alcanza a ver con un microscopio compuesto actual?

El Físico Ernes Abbe (1872) quien trabajaba para la compañía Carl Zeiss realizó avances fundamentales tanto en el diseño de los microscopios de luz como en el campo de la óptica teórica, y predijo desde aquel entonces que para mejorar el poder de resolución de los microscopios compuestos se necesitaba de longitudes de onda mucho más cortas que las de la luz visible.

Sin embargo, para que esto hubiese sido posible, pasaron muchos años; primero tuvieron que existir toda una serie de conocimientos científicos fundamentales que llevaron al descubrimiento del electrón, y de que éste tiene comportamiento de partícula y de onda, y que al pasar a través de un campo electromagnético los electrones desvían su trayectoria igual que los fotones lo hacen a través de una lente de cristal para formar una imagen. Ya en la primera mitad del siglo pasado, fue Louis De Broglie (1924) quien demostró que el electrón tenía propiedades de onda que sustancialmente son de longitud de onda más corta que la luz visible y Busch (1926) que demostró que un haz de electrones podía ser desviado por lentes magnéticas al igual que la luz es desviada por una lente de vidrio. Esta serie de hallazgos científicos permitió el desarrollo del primer tipo de microscopio electrónico, el MET, en un principio inventado para análisis de materiales.

¿Entonces qué es el MET y cómo funciona?

Explicación:


mariaalexandrapachay: Es un instrumento científico con un peso aproximado de una tonelada y con una columna de alrededor de 1.5 metros de altura donde se utiliza alto voltaje para producir y enfocar un haz de electrones acelerados en alto vacío que al impactar en una de las caras de una muestra de tejido ultradelgada forman una imágen al emerger por la cara contraria.
mariaalexandrapachay: siiiiii
mariaalexandrapachay: nooo no te conosco
mariaalexandrapachay: nooo ya lo histe una vez conmigo
Otras preguntas