Que tiene en comun los pares ordenados de la primera fila? y los de la siguiente fila?¿porque? las cordenadas del tercer pez son y las del cuarto son es de la pagina 85 del cuaderno de matematica de 6to grado de prinmaria
2 son parecido por que se acercan a los numeros
Las del cuarto son 22,4. 25,5. 26,4. 27,5 27,3 24,3
Respuestas a la pregunta
Respuesta:
n matemáticas, un par ordenado es una pareja de objetos matemáticos, en la que se distingue un elemento y otro. El par ordenado cuyo primer elemento es a y cuyo segundo elemento es b se denota como (a, b).
Un par ordenado (a, b) no es el conjunto que contiene a los elementos a y b, denotado por {a, b}. Un conjunto está definido únicamente por sus elementos, mientras que en un par ordenado el orden de estos es también parte de su definición. Por ejemplo, los conjuntos {0, 1} y {1, 0} son idénticos, pero los pares ordenados (0, 1) y (1, 0) son distintos.
Los pares ordenados también se denominan tuplas o vectores dimensionales. La noción de una colección finita de objetos ordenada puede generalizarse a más de dos objetos, dando lugar al concepto de n-tupla.
El producto cartesiano de conjuntos, las relaciones binarias, las coordenadas cartesianas, las fracciones y las funciones se definen en términos de pares ordenados.
Explicación paso a paso:
n matemáticas, un par ordenado es una pareja de objetos matemáticos, en la que se distingue un elemento y otro. El par ordenado cuyo primer elemento es a y cuyo segundo elemento es b se denota como (a, b).
Un par ordenado (a, b) no es el conjunto que contiene a los elementos a y b, denotado por {a, b}. Un conjunto está definido únicamente por sus elementos, mientras que en un par ordenado el orden de estos es también parte de su definición. Por ejemplo, los conjuntos {0, 1} y {1, 0} son idénticos, pero los pares ordenados (0, 1) y (1, 0) son distintos.
Los pares ordenados también se denominan tuplas o vectores dimensionales. La noción de una colección finita de objetos ordenada puede generalizarse a más de dos objetos, dando lugar al concepto de n-tupla.
El producto cartesiano de conjuntos, las relaciones binarias, las coordenadas cartesianas, las fracciones y las funciones se definen en términos de pares ordenados.