Ciencias Sociales, pregunta formulada por yessim1208, hace 6 meses

¿ que son las propiedades fundamentales o extensivas?​

Respuestas a la pregunta

Contestado por juandavidmolina702
1

Respuesta:

Explicación:

Propiedades intensivas y extensivas

Ir a la navegaciónIr a la búsqueda

Las propiedades intensivas son aquellas que no dependen de la cantidad de materia que posee un cuerpo. Si el sistema se divide en varios sistemas su valor permanecerá inalterable, por este motivo no son aditivas.1​

Por el contrario, las propiedades extensivas son aquellas que sí dependen de la masa, son magnitudes cuyo valor es proporcional al tamaño del sistema que describe, son propiedades aditivas. Estas magnitudes pueden ser expresadas como la suma de las magnitudes de un conjunto de subsistemas que forman el sistema original de cada materia.

Muchas magnitudes extensivas, como el volumen o la cantidad de calor, pueden convertirse en intensivas dividiéndolas por la cantidad de sustancia, la masa o el volumen de la muestra; resultando en valores por unidad de sustancia, de masa, o de volumen respectivamente; como lo son el volumen molar, la porosidad, el calor específico o el peso

Ejemplos de propiedades extensivas

Ejemplos de propiedades extensivas son el peso, fuerza, longitud, volumen, y la masa. Son aditivas porque los valores de una misma propiedad extensiva se pueden sumar. En general el cociente entre dos magnitudes extensivas nos da una magnitud intensiva, por ejemplo, de la división entre masa y volumen se obtiene la densidad.

Combinación de magnitudes extensivas

Considérese un conjunto de magnitudes intensivas {\displaystyle (a_{1},\dots ,a_{m})}(a_{1},\dots ,a_{m}) y un conjunto de magnitudes extensivas {\displaystyle (AA..1,\dots ,A_{n})}{\displaystyle (AA..1,\dots ,A_{n})}, y sea una función {\displaystyle F(a_{i};A_{j})}F(a_{i};A_{j}) representa otra magnitud extensiva si para cualquier {\displaystyle \alpha \in \mathbb {R} }\alpha \in \mathbb {R} :

{\displaystyle F(a_{1},\dots ,a_{m};\alpha A_{1},\dots ,\alpha A_{n})=\alpha F(a_{1},\dots ,a_{m};A_{1},\dots ,A_{n}).\,}F(a_{1},\dots ,a_{m};\alpha A_{1},\dots ,\alpha A_{n})=\alpha F(a_{1},\dots ,a_{m};A_{1},\dots ,A_{n}).\,

Por tanto, las magnitudes extensivas son funciones homogéneas (de grado 1) con respecto a {\displaystyle A_{j}}A_{j}. Se sigue del teorema de Euler sobre funciones homogéneas que:

{\displaystyle F(a_{1},\dots ,a_{m};A_{1},\dots ,A_{n})=\sum _{k=1}^{n}A_{k}\left({\frac {\partial F}{\partial A_{k}}}\right),}F(a_{1},\dots ,a_{m};A_{1},\dots ,A_{n})=\sum _{k=1}^{n}A_{k}\left({\frac {\partial F}{\partial A_{k}}}\right),

donde las derivadas parciales se consideran respecto a todas las magnitudes excepto las {\displaystyle A_{j}}A_{j}. El contrarrecíproco también es cierto, si una función no obedece la relación anterior, entonces no es una magnitud extensiva, de lo contrario sí lo sería

Otras preguntas