Que se entiende por Mecanica Clasica. Cual es su factor mas determinante.
lo necestito
Respuestas a la pregunta
Respuesta:
La mecánica clásica es la rama de la física que estudia las leyes del comportamiento de cuerpos físicos macroscópicos (a diferencia de la mecánica cuántica) en reposo y a velocidades pequeñas comparadas con la velocidad de la luz.
En la mecánica clásica en general se tienen tres aspectos invariantes: el tiempo es absoluto, la naturaleza realiza de forma espontánea la mínima acción y la concepción de un universo determinado.
El sistema solar se puede explicar con gran aproximación mediante la mecánica clásica, usando las leyes de movimiento y gravitación universal de Newton. Solo algunas pequeñas desviaciones en el perihelio de Mercurio, que fueron descubiertas tardíamente, no podían ser explicadas por su teoría. La solución al problema del perihelio fue dada por el modelo teórico de Einstein y comprobada por los científicos Sir Frank Watson Dyson, Arthur Eddington y C. Davidson en 1919.[1]
El primer desarrollo de la mecánica clásica suele denominarse mecánica newtoniana. Consiste en los conceptos físicos basados en los trabajos fundacionales de Sir Isaac Newton, y en los métodos matemáticos inventados por Gottfried Wilhelm Leibniz, Joseph-Louis Lagrange, Leonhard Euler, y otros contemporáneos, en el siglo XVII para describir el movimiento de los cuerpos físicos bajo la influencia de un sistema de fuerzas. Posteriormente, se desarrollaron métodos más abstractos que dieron lugar a las reformulaciones de la mecánica clásica conocidas como mecánica lagrangiana y mecánica hamiltoniana. Estos avances, realizados predominantemente en los siglos XVIII y XIX, van sustancialmente más allá de los trabajos anteriores, sobre todo por su uso de la mecánica analítica. También se utilizan, con algunas modificaciones, en todas las áreas de la física moderna.
La mecánica clásica proporciona resultados extremadamente precisos cuando se estudian objetos grandes que no son extremadamente masivos y velocidades que no se acercan a la velocidad de la luz. Cuando los objetos que se examinan tienen el tamaño del diámetro de un átomo, se hace necesario introducir el otro gran subcampo de la mecánica: la mecánica cuántica. Para describir las velocidades que no son pequeñas en comparación con la velocidad de la luz, se necesita la relatividad especial. En los casos en los que los objetos se vuelven extremadamente masivos, se aplica la relatividad general. Sin embargo, algunas fuentes modernas incluyen la mecánica relativista en la física clásica, que en su opinión representa la mecánica clásica en su forma más desarrollada y precisa.
Existen varias formulaciones diferentes, en mecánica clásica, para describir un mismo fenómeno natural que, independientemente de los aspectos formales y metodológicos que utilizan, llegan a la misma conclusión.
La mecánica vectorial, que deviene directamente de las leyes de Newton, por lo que también se le conoce como «mecánica newtoniana», llega, a partir de las tres ecuaciones formuladas por Newton y mediante el cálculo diferencial e integral, a una muy exacta aproximación de los fenómenos físicos. Es aplicable a cuerpos que se mueven en relación con un observador a velocidades pequeñas comparadas con la de la luz. Fue construida en un principio para una sola partícula moviéndose en un campo gravitatorio. Se basa en el tratamiento de dos magnitudes vectoriales bajo una relación causal: la fuerza y la acción de la fuerza, medida por la variación del momentum (cantidad de movimiento). El análisis y síntesis de fuerzas y momentos constituye el método básico de la mecánica vectorial. Requiere del uso privilegiado de sistemas de referencia inercial.[2]
La mecánica analítica (analítica en el sentido matemático de la palabra, no en el sentido filosófico) es una formulación matemática abstracta sobre la mecánica; permite desligarse de esos sistemas de referencia privilegiados y tener conceptos más generales al momento de describir un movimiento con el uso del cálculo de variaciones. Sus métodos son poderosos y trascienden de la mecánica a otros campos de la física. Se puede encontrar el germen de la mecánica analítica en la obra de Leibniz, quien propone que para solucionar problemas en mecánica, magnitudes escalares (menos oscuras según Leibniz que la fuerza y el momento de Newton), como energía cinética y el trabajo, son suficientes y menos oscuras que las cantidades vectoriales, como la fuerza y el momento, propuestos por Newton. Existen dos formulaciones equivalentes: la llamada mecánica lagrangiana es una reformulación de la mecánica realizada por Joseph Louis Lagrange que se basa en la ahora llamada ecuación de Euler-Lagrange (ecuaciones diferenciales de segundo orden) y el principio de mínima acción; la otra, llamada mecánica hamiltoniana, es una reformulación más teórica basada en una funcional llamada hamiltoniano realizada por William Hamilton.