Biología, pregunta formulada por madelc2007, hace 8 meses

Que pasaría si las proteínas transportadoras de glucosa sufrirán daños. Que haría la célula? O ¿que pasaría?

Respuestas a la pregunta

Contestado por shantalmi2000
3

Respuesta:

En los últimos siete años ha habido un explosivo incremento en la información sobre estos transportadores, de hecho, hasta hace diez años solo se conocían 6 transportadores pero esta familia ha crecido rápidamente hasta llegar a 14 miembros para los Gluts y 6 miembros para los SGLT´s. El impacto de estos descubrimientos se hace notar cuando se analizan los procesos en los que se involucran estas proteínas: Control de la glicemia basal y post-prandial; mecanismos de absorción de la glucosa y fructosa en el intestino delgado; absorción de fructosa en los espermatozoides; reabsorción de glucosa a nivel tubular renal y yeyuno; maduración de la expresión de Glut´s en la mama en lactación; incorporación de glucosa al músculo durante el ejercicio; mecanismo sensor en la secreción de insulina y respuestas adaptativa del metabolismo energético durante estados de estrés, etc.

Palabras clave: Glut, Glucosa, transportador, difusión facilitada, SGLT-1, SGLT-2, Co-transportador.

Abstract

Hexoses like glucose, galactose and fructose serve as basic fuel molecules for eucaryotic cells. These molecules are unable to diffuse across cellular membranes, and require transporter proteins for entry into and exit from cells. Three distinct groups of hexose transporters have been identified and classified based on their dependence on cellular energy and its chemistry structure. Each of the transporters has different affinities for glucose and the other hexoses, which largely dictates their function. The hexose transporters are large integral membrane proteins. Based on the deduced amino acid sequences of their cloned cDNAs, they have similar structures, consisting of 12 or 14 membrane-spanning regions with cytoplasmic C-terminal and N-terminal tails. Also, they all appear to be glycosylated on one of the extracellular loops. Transport of sugars across membranes appears to result from a series of conformational changes which "flips" the transporter between alternate states with the substrate binding site either facing the extracellular or cytoplasmic side of the membrane. Transport in either direction is thus possible, depending on relative substrate concentrations on either side of the membrane. The original protein, GLUT1, was identified in molecular terms 12 years ago. In the subsequent 15 years, a family of related transporters was identified (GLUTs 1-14). The impact of these discoveries is better realized when we list a sample of the processes that utilize different members of the GLUT family: control of glycemia; insulin dependent glucose utilization; transport pathways in brain neurons and glia; mechanisms of glucose and fructose uptake in the intestinal track; reabsorption of glucose in kidney tubules and jejunum; maturation of transporters during lactation and weaning; sensing of glucose levels by the pancreas and the liver; control of glucose uptake in high fat feeding; glucose uptake in response to exercise, adaptive response of energy metabolism to cellular stress.

Key words: Glut, Glucose, transporter, facilitative diffusion, SGLT-1, SGLT-2, Co-transporter.

Introducción

Los carbohidratos son sustancias químicas orgánicas de amplia distribución en la naturaleza. En las plantas son producidos por el proceso de la fotosíntesis e incluyen a la celulosa como ejemplo de un carbohidrato estructural y al almidón como carbohidrato de almacén. En las células animales los carbohidratos - en forma de glucosa o en su polímero de almacén, el glucógeno – sirven como fuente importante de energía para las actividades vitales de la mayoría de las especies vivientes que habitan el planeta.

Para poder llevar a cabo importantes funciones como la oxidación y el almacenaje, la glucosa debe entrar al interior de la célula para incorporarse a la vía metabólica que predomine según las condiciones hormonales y energéticas del momento1. Una célula puede sobrevivir si evita que su medio interno se mezcle y establezca el equilibrio con el medio ambiente. Este semi-aislamiento es proporcionado por la membrana celular, de naturaleza lipídica y relativamente impermeable a moléculas polares como la glucosa. Es por esta característica que moléculas como los carbohidratos requieren algún elemento transportador que les permita cruzar el escollo que significa la membrana; así, la naturaleza, a través de millones de años de evolución biológica desarrolló moléculas proteicas que cruzan completamente la membrana y que son capaces de formar "poros" que comunican el exterior con el interior celular, permitiendo el flujo de moléculas como los aminoácidos, vitaminas y carbohidratos en un sentido u otro. En este orden de ideas, los transportadores para glucosa trabajan de manera coordinada con factores hormonales, receptores, y segundos mensajeros para mantener el flujo de este metabolito en condiciones normales.

Explicación:

Otras preguntas