• ¿qué otro suceso o proceso se te ocurre que se pueda resolver mediante la función exponencial? y ¿por qué?.
Respuestas a la pregunta
Explicación:
Se usan igual para dar el crecimiento de cosas como: el crecimiento de una población determinada, el crecimiento de personas infectadas con el VIH (sida), o la disminución de una carga de la carga de un condensador, inundaciones de tiendas agrícolas, vida media de una sustancia radioactiva, desintegración atomiza, etc.
Las ecuación exponenciales se definen como: f(x) = a*.
Ha sido utilizada para obtener el área, el volumen, de cuerpos geométricos, además se usa en el dimensionamiento de envases para productos líquidos (leche, agua) y productos granulados como (arroz, detergente, leche en polvo) etc. Y resuelven problemas de desarrollo y descomposición.
Las funciones exponenciales son las que tienen más presencia en los fenómenos observables, por lo que existen diversidad de situaciones cuyo estudio implica el planteamiento de ecuaciones exponenciales o logarítmicas.
Ejemplo de ello es la escala Rither. En ella se define la magnitud M de un terremoto en función de la amplitud A de sus ondas superficiales así: M=log A+C donde C =3,3+1,66 logD-logT es una constante que depende del periodo T de las ondas registradas en elsismógrafo y de la distancia D de éste al epicentro, en grados angulares. Si quisiésemos saber la amplitud (intensidad) de la onda sísmica tendríamos que resolver una ecuación logarítmica.
También tendríamos que resolver ecuaciones si queremos hallar el número horas necesarias (t) para que la bacteria Escherichia coli presente en el intestino de muchos mamíferos alcance un número concreto. (P=P0.2t/D siendo P= 8000 bacterias, P0 =500 D=30).
Análogamente si queremos hallar la antigüedad de un hueso hallado en un yacimiento arqueológico sabiendo que contiene el 20% del carbono 14 que contenía en vida del animal, tenemos que resolver la ecuación: 0,2=e-0,000121t .
En biología: La ameba es un organismo vivo muy simple que se reproduce dividiéndose en dos; cada nueva ameba vuelve a dividirse en dos, y así sucede con todas las que se generan.