que es una funcion logaritmica y cuales son sus propiedades
Respuestas a la pregunta
Respuesta:la función logarítmica es aquella que genéricamente se expresa como f (x) == logax, siendo a la base de esta función, que ha de ser positiva y distinta de 1.
La función logarítmica es la inversa de la función exponencial (ver t35), dado que:
loga x = b Û ab = x.
Las propiedades generales de la función logarítmica se deducen a partir de las de su inversa, la función exponencial. Así, se tiene que:
La función logarítmica sólo existe para valores de x positivos, sin incluir el cero. Por tanto, su dominio es el intervalo (0,+¥).
Las imágenes obtenidas de la aplicación de una función logarítmica corresponden a cualquier elemento del conjunto de los números reales, luego el recorrido de esta función es R.
En el punto x = 1, la función logarítmica se anula, ya que loga 1 = 0, en cualquier base.
La función logarítmica de la base es siempre igual a 1.
Finalmente, la función logarítmica es continua, y es creciente para a > 1 y decreciente para a < 1.
Explicación paso a paso:
Respuesta:
Respuesta:la función logarítmica es aquella que genéricamente se expresa como f (x) == logax, siendo a la base de esta función, que ha de ser positiva y distinta de 1.
La función logarítmica es la inversa de la función exponencial (ver t35), dado que:
loga x = b Û ab = x.
Las propiedades generales de la función logarítmica se deducen a partir de las de su inversa, la función exponencial. Así, se tiene que:
La función logarítmica sólo existe para valores de x positivos, sin incluir el cero. Por tanto, su dominio es el intervalo (0,+¥).
Las imágenes obtenidas de la aplicación de una función logarítmica corresponden a cualquier elemento del conjunto de los números reales, luego el recorrido de esta función es R.
En el punto x = 1, la función logarítmica se anula, ya que loga 1 = 0, en cualquier base.
La función logarítmica de la base es siempre igual a 1.
Finalmente, la función logarítmica es continua, y es creciente para a > 1 y decreciente para a < 1.
Explicación paso a paso: