que es la descomposicion y composicion de un vector?????
faty3007e:
Composición de vectores: es la suma de los vectores.
Descomposición de vectores en sus componentes
Al igual que se pueden combinar dos vectores en uno, o sea su suma, también es posible hacer lo contrario; dado un vector, encontrar los dos vectores cuya suma es el vector primitivo.. ESPERO K T AYUDE
Descomposición de vectores en sus componentes
Al igual que se pueden combinar dos vectores en uno, o sea su suma, también es posible hacer lo contrario; ESPERO K T AYUDE
Al igual que se pueden combinar dos vectores en uno, o sea su suma, también es posible hacer lo contrario; dado un vector, encontrar los dos vectores cuya suma es el vector primitivo;ESPERO AYUDAR
Respuestas a la pregunta
Contestado por
6
DESCOMPOSICIÓN DE VECTORES
Para poder operar analíticamente con vectores (por ejemplo hacer sumas y restas) es apropiado previamente hacer una descomposición, en componentes paralelas a los ejes de un sistema de referencia, SR. El mejor modo de explicar qué significa todo esto es mostrar cómo se hace, paso a paso. Aquí va:Supongamos que tenemos el vector A, que podría representar cualquier magnitud vectorial: una fuerza, una velocidad, una aceleración... Para descomponerlo necesitamos primero un sistema de referencia, x-y, que ya coloqué acá.Por el extremo de A trazo rectas paralelas a los ejes del SR. Cuando esas rectas cortan los ejes queda definido un punto (llamado coordenada) que es el extremo de los vectores componentes de A.Entonces quedan definidas las componentes de A, también llamadas proyecciones de A sobre los ejes del SR. En el ejemplo, el módulo deAx vale 7 y el módulo deAy vale 2.La componente de A sobre el eje x suele recibir el nombre Ax. Y la componente sobre el eje y, Ay.Entre el vector original y sus componentes hay establecidas ciertas relaciones matemáticas, por ejemplo la relación pitagórica:Ax² + Ay² = A²Si te cabe duda de de dónde viene eso, prestale atención al triangulito sombreado: En el ejemplo, el módulo de Aresulta valer7,28Y también deberás admitir que:sen α = Ay / Acos α = Ax / Atg α = Ay / Ax En el ejemplo, el valor de αresulta 16°Y lo más interesante que tienen las componentes es que (si recordás el asunto de la suma de vectores por el método de la poligonal o por el método del paralelogramo) la suma de las componente es igual al vector original. Ax + Ay = A (¡Ojo! ¡esto que acabo de escribir es una suma vectorial!)O sea que la descomposición de vectores es la operación inversa de la suma. Acá se ve qué importante sería contar con flechitas para colocar arriba de las letras...El broche de oro. Si para cada eje hubiéramos definido previamente un versor, entonces podríamos expresar lal vector A de esta manera:A = 7 î + 2 ĵdonde î y ĵ son los nombres habituales que reciben los versores de eje x e y respectivamente. La combinación de estas dos operaciones (expresión con múltiplo de un versor y suma) nos ofrece un método apropiado para la operación analítica con vectores.
Para poder operar analíticamente con vectores (por ejemplo hacer sumas y restas) es apropiado previamente hacer una descomposición, en componentes paralelas a los ejes de un sistema de referencia, SR. El mejor modo de explicar qué significa todo esto es mostrar cómo se hace, paso a paso. Aquí va:Supongamos que tenemos el vector A, que podría representar cualquier magnitud vectorial: una fuerza, una velocidad, una aceleración... Para descomponerlo necesitamos primero un sistema de referencia, x-y, que ya coloqué acá.Por el extremo de A trazo rectas paralelas a los ejes del SR. Cuando esas rectas cortan los ejes queda definido un punto (llamado coordenada) que es el extremo de los vectores componentes de A.Entonces quedan definidas las componentes de A, también llamadas proyecciones de A sobre los ejes del SR. En el ejemplo, el módulo deAx vale 7 y el módulo deAy vale 2.La componente de A sobre el eje x suele recibir el nombre Ax. Y la componente sobre el eje y, Ay.Entre el vector original y sus componentes hay establecidas ciertas relaciones matemáticas, por ejemplo la relación pitagórica:Ax² + Ay² = A²Si te cabe duda de de dónde viene eso, prestale atención al triangulito sombreado: En el ejemplo, el módulo de Aresulta valer7,28Y también deberás admitir que:sen α = Ay / Acos α = Ax / Atg α = Ay / Ax En el ejemplo, el valor de αresulta 16°Y lo más interesante que tienen las componentes es que (si recordás el asunto de la suma de vectores por el método de la poligonal o por el método del paralelogramo) la suma de las componente es igual al vector original. Ax + Ay = A (¡Ojo! ¡esto que acabo de escribir es una suma vectorial!)O sea que la descomposición de vectores es la operación inversa de la suma. Acá se ve qué importante sería contar con flechitas para colocar arriba de las letras...El broche de oro. Si para cada eje hubiéramos definido previamente un versor, entonces podríamos expresar lal vector A de esta manera:A = 7 î + 2 ĵdonde î y ĵ son los nombres habituales que reciben los versores de eje x e y respectivamente. La combinación de estas dos operaciones (expresión con múltiplo de un versor y suma) nos ofrece un método apropiado para la operación analítica con vectores.
Otras preguntas
Ciencias Sociales,
hace 7 meses
Inglés,
hace 7 meses
Matemáticas,
hace 7 meses
Arte,
hace 1 año
Matemáticas,
hace 1 año
Química,
hace 1 año