Matemáticas, pregunta formulada por anthony4411, hace 1 año

Qué es el número de oro en la recta real? !

Respuestas a la pregunta

Contestado por ias500
2
Representamos primero √5/2. Para ello se dibuja un rectángulo de lados 1 y 1/2, pues entonces su diagonal será: 
d = √[1² + (1/2)²] = √5/2 
Pones la base 1 en el segmento [0, 1] de la recta real y la altura 1/2 en el segmento [0, 1/2] del eje y. Trazas la diagonal del rectángulo. Con un compas lleva esa diagonal sobre la recta real. Esto te señala el punto √5/2. 

Lo demás es fácil: basta con añadir 1/2 a √5/2, es decir, al segmento [0, √5/2] le añades por la derecha un segmento de longitud 1/2. El extremo de ese segmento representa el número áureo Φ. 
Otras preguntas