Que es el mínimo común múltiplo para fracciones algebraicas y de Ejemplos
Respuestas a la pregunta
Respuesta:
Dadas dos o más fracciones algebraicas, reducirlas a común denominador es encontrar dos o más fracciones algebraicas equivalentes con el mismo denominador.
Pasos para reducir a común denominador
Nos valdremos de las fracciones siguientes:
1.Descomponemos los denominadores en factores para hallar el mínimo común múltiplo, que será el común denominador.
x² − 1 = (x + 1) · (x − 1)
Una suma por diferencia es igual a diferencia de cuadrados
x² + 3x + 2 = (x + 1) · (x + 2)
Factorizamos el trinomio igualando a cero y resolviendo la ecuación:
m.c.m. (x² − 1, x² + 3x + 2) = (x + 1) · (x − 1) · (x + 2)
2.Dividimos el común denominador entre los denominadores de las fracciones dadas y el resultado lo multiplicamos por el numerador correspondiente.
Respuesta:
Como en las fracciones, para operar con fracciones algebraicas es interesante que tengan el mismo polinomio en el denominador. Así pues, el proceso de reducción de fracciones algebraicas a común denominador consiste en, dados dos pares de fracciones algebraicas, encontrar dos pares de fracciones algebraicas equivalentes con común denominador.
Explicación paso a paso: